|AUINOrs rroor |

L. Spector and T. Helmuth

The approach to uniform variation that we describe in this chapter differs from
that of the past work by prioritizing uniformity (of both kinds): we designed
our single new genetic operator, which incorporates aspects of both mutation and
crossover, in a way that causes uniformity to take precedence over the effects of
program shape and size. We did this, essentially, by ignoring the syntactic structure
of programs during the first phase of the action of the operator. This “syntax
blindness” can produce children that violate syntactic constraints, so we must follow
the syntax-blind variation step with a repair step that ensures or restores syntactic
validity. While we do not claim that our new operator is “perfectly” uniform in the
sense that we are using that term, we do believe that it is more uniform than other
operators described in the literature and that its good performance is a consequence
of this fact.

In the following sections we first describe the PushGP genetic programming
system, within which all of our demonstrations are conducted; Push’s minimal
syntactic constraints make the repair step of our method particularly simple. We then
describe our new operator, which we call ULTRA (for “Uniform Linear Transfor-
mation with Repair and Alternation”). We then demonstrate the utility of ULTRA
on several problems. Our demonstrations include applications to the difficult drug
bioavailability and Pagie-1 benchmark problems, for which ULTRA provides
dramatic improvements both in problem-solving power and in control of program
size. We also demonstrate the utility of ULTRA on a factorial regression problem
that involves greater use of hierarchical program structure, again documenting
significant improvements both in problem-solving power and in control of program
size. Finally, we include results of an application to a Boolean multiplexer problem,
for which the results are mixed. Following these demonstrations we conclude with
some comments about directions for future research.

2 Push and PushGP

Push is a programming language that was designed specifically for use in
evolutionary computation systems, as the language in which evolving programs
are expressed (Spector 2001; Spector and Robinson 2002; Spector et al. 2005).
Push is a stack-based programming language that is similar in some ways to others
that have been used for genetic programming (e.g. Perkis 1994). It is a postfix
language in which literals are pushed onto data stacks and instructions act on stack
data and return their results to stacks.

One novel feature of Push is that a separate stack is used for each data type.
Instructions take their arguments (if any) from stacks of the appropriate types and
they leave their results (if any) on stacks of the appropriate types. This allows
instructions and literals to be freely intermixed regardless of type while still ensuring
execution safety. By convention, instructions that find insufficient data on the
relevant stacks act as “no-ops”—that is, they do nothing.

108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

135
136
137
138
139
140
141
142
143
144
145
146
147



| AUtnor s Froor |

0-\-\\44‘

8 Uniform Linear Transformation with Repair and Alternation in Genetic. . .

Many of Push’s most unusual and powerful features stem from the fact that
code is itself a Push data type, and from the fact that Push programs can easily
(and often do) manipulate their own code as they run. Push programs may be
hierarchically structured with parentheses, and this hierarchical structure affects
how code-manipulation instructions work. It also affects the ways that traditional
genetic operators operate on programs, just as the analogous structure of tree-based
programs affects the ways that traditional genetic operators operate on them.
In the most standard configuration PushGP uses mutation and crossover operators
that are almost identical to those used in tree-based genetic programming, with
mutation replacing a- sub-expression (a literal, an instruction, or a parenthesized
code fragment) with a newly generated sub-expression, and with crossover replacing
a sub-expression with a sub-expression randomly chosen from another program in
the population.

Push and PushGP implementations have been written in C++, Java, JavaScript,
Python, Common Lisp, Clojure, Scheme, Erlang, Scala and R. Many of these are
available for free download from the Push project page.”

3 The ULTRA Operator

“ULTRA,” which stands for “Uniform Linear Transformation with Repair and
Alternation,” is a new genetic operator that takes two parent programs and produces
one child program. ULTRA acts on hierarchically structured programs but treats
them as linear sequences. It uses each element of the parent sequences with uniform
probability and modifies each element of the resulting child sequence with uniform
probability. It was motivated by theoretical considerations regarding relations
between program size, function, and mutability, and by analogies to the mechanics
of mutation and crossover in biological (linear) genomes. We will describe ULTRA
here in terms of the elements of Push programs, but the operator could be used on
M program representations with suitable modifications.

ULTRA works by first “linearizing” each parent into a flat, depth-first sequence
that includes a token for each literal, instruction, and delimiter (e.g. Push

148
149
150
151
152
153

155
156
157
158
159
160
161
162
163

164

parentheses) in the parent program. It then pads the shorter parent program with null
tokens so that both parent programs are the same iength. These tokens ensure that
instructions in programs of different lengths have approximately equal probabilities
of being included in the child, no matter where those instructions occur. The null
tokens are removed from the child at the end of ULTRA.

ULTRA next traverses the linearized parents, building the child as a linear
sequence of tokens taken from the parents. Traversal begins with a “read head”” on
the first token of the first parent, and the copying of that token to the child. After this

2http://hampshire.edu/lspector/push.html

181
182
183

end o the *



|Autnors Froor |

8 Uniform Linear Transformation with Repair and Alternation in Genetic. . .
4 Experiments 224

To test the performance of ULTRA compared to standard genetic operators, we 225
conducted runs of PushGP on four problems: drug bioavailability, Pagie-1 symbolic 226
regression, factorial symbolic regression, and 6-multiplexer. 227

The drug bioavailability problem is a predictive modeling problem in which the 228
programs must predict the human oral bioavailability of a set of drug compounds 229
given their molecular structure (Silva and Vanneschi 2009, 2010). This problem 230
has been used for genetic programming benchmarking in various studies (Silva 231
and Vanneschi 2009; Harper 2012), and is recommended as a benchmark problem 232
in a recent article on improving the use of benchmarks in the field (McDermott 233 k

et al. 2012). Each fitness case for this problem represents a molecule, with 241 234
floafing point inputs, each of which represents a different molecular descriptor 235
of the molecule, and a single floating point output representing the human oral 236

bioavailability of that molecule. The dataset is available online.’ 237
The Pagie-1 symbolic regression problem, proposed in Pagie and Hogeweg 238
(1997), is a function on two variables of the form 239
1 1
fx.y) =

A+x9 " Qv

Training set inputs are taken from the range [—5, 5] in steps of 0.4, resulting in 676 240
fitness cases. This problem has also been used for benchmarking (Harper 2012), 241
and has been recommended as a replacement for “toy” problems such as symbolic 242
regression of the quartic polynomial (McDermott et al. 2012; White et al. 2013). 243

The factorial symbolic regression problem is an integer symbolic regression 244
problem with one input and one output, in which the output should be the factorial of 245
the input. We used 10 test cases, ranging from 1! = 1 to 10! = 3,628,800. Because 246
error magnitudes vary significantly across cases we used “lexicase selection” instead 247
of tournament selection for these runs. Lexicase selection is a parent selection 248
algorithm that was developed to help solve problems that are “modal” in the sense 249
that they require solution programs to perform qualitatively differently actions for 250
inputs that belong to different classes, but it is also useful for problems in which 251
error magnitudes are likely to vary significantly across cases. In lexicase selection a 252
parent is selected by starting with a pool of potential parents—normally the entire 253
population—and then filtering the pool on the basis of performance on individual 254

fitness cases, considered one at a time (Spector 2012). 255
The 6-multiplexer problem (MUXG6) is the standard boolean multiplexer problem 2se
used in Koza (1992) and in many subsequent studies by many authors. 257

In our experiments, we used the PushGP parameters listed in Table 8.1. We made 258
an effort to use parameters similar to those used in previous work on these problems 25
where possible. We used unbiased node selection for all subtree replacement 260
operators. Table 8.2 presents the parameters we used for ULTRA. 261

3http://personal.disco.unimib.it/Vanneschi/bioavailability. txt
e (A
ADD TOGTNOTE: Receatly, hovgver, concerns have been raiged dbodt the us
oF Hs! problem ; Cee hf+p://jmmc&.na+/zot3ﬂz/“l/
%f—-hMG-b@*"ef'h’&A) nes o htm|



\AUtnor s rFroor |

AQl

L. Spector and T. Helmuth

70 e 1 70
| | *
1\ | L
i .
| ° .
|
‘ L ] L ]
60 - 1 60 - .
=
% 50 - ch 50 - |
= s :
o o |
c : po ;
o ) 5
= = ;
40 - . 40 - 1
30 - 30 -
T | R } S T T 1‘
81/9/10 45/45/10 ULTRA 81/9/10 45/45/10 ULTRA

Fig. 8.1 Results from the bioavailability problem. We conducted 200 runs for each choice of
operators. The RMSE of the best individuals on the training fitness cases (/eff) and on the test
fitness cases (right). In each plot, subtree replacement 81/9/10 is plotted first, followed by subtree
replacement 45/45/10 and then ULTRA. In each box plot, the box stretches from the first quartile
to the third quartile with a line for the median in the middle. The whiskers extend to the furthest
value within 1.5 times the inter-quartile range. Points beyond the whiskers are outliers, plotted as
points. Note that in the right plot, 8 outliers in the 81/9/10 set,/ outliers in the 45/45/10 set, and /
outlier in the ULTRA set fell outside the of the visible plot t

Table 8.4 presents the results from our experiments using the factorial problem.
ULTRA produced a better success rate and lower computational effort. The
difference between the MBF subtree replacement 45/45/10 and ULTRA is statis-
tically significant based on an unpaired t-test at p = 0.01

Mean program sizes for the factorial problem runs are presented in Fig. 8.4.
The runs using ULTRA maintained a relatively constant mean program size, while
runs using subtree replacement 45/45/10 show very fast code growth over the first
100 generations, followed by stable sizes near the maximum program size of 500.

Table 8.5 presents results from our experiments on the 6-multiplexer problem.
In contrast to the results on other problems presented here, subtree replacement
performs better than ULTRA on all measurements of problem-solving performance.

Ly

330
331

332
333

336
337
338
339
340

Use
(‘cp\o\ctmu{'

Q:&w—c

in gl )

A



\Autors rroor |

8 Uniform Linear Transformation with Repair and Alternation in Genetic. . .

500
A—a Attt e
A e
= A&
)
N
cg 300 -
& 200 - g
2
100 -

0 1 1 1
0 25 50 75 100

Generation

Fig. 8.2 Mean program sizes for the bioavailability problem

Table 8.3 Results on the Pagie-1 problem. We conducted 100 runs
for each choice of operators. MBF is the mean best fitness of the run.
Note that the reported fitnesses are the mean errors over test cases, not
the summed errors

Operators Successes MBF :
Subtree replacement 80/10/10 0 _0.364{6 30
Subtree replacement 45/45/10 9}*5 333

0 0.
e san ol

Table 8.4 Results on the factorial problem for 100 runs in each
condition. CE is computational effort and MBF is the mean best fitness
of the run. Note that the reported fitnesses are the mean errors over test
cases, not the summed errors

Operators Successes CE MBF
Subtree replacement 45/45/10 2 77,520,000 121,867

ULTRA 61 2,470,000 28,980

The difference between the MBF of subtree replacement 80/10/10 and ULTRA is
statistically significant based on an unpaired t-test at p = 0.01.

Program sizes for the 6-multiplexer problem are shown in Fig.8.5. As we have
seen before, sizes in subtree replacement runs grow rapidly and stay high, whereas
sizes in ULTRA runs decrease rapidly and stay relatively low.

3.1

3.2
3.3
3.4

4.1

t4.2
4.3

31
342
343
344
345



\AUtNors rFroor |

L. Spector and T. Helmuth

400
[
i
1] 300 -
=
g -e- 80/10/10
0% -4 45/45/10
£ 200 = ULTRA
=

100 -

o N T ¥
0 250 500 750 1000

Generation

Fig. 8.3 Mean program sizes for the Pagie-1 problem

6 Discussion and Future Work

The results presented here demonstrate that ULTRA, a new genetic operator that
prioritizes uniformity and incorporates features of both traditional mutation and
traditional crossover, can be an effective tool in helping genetic programming to
solve difficult programs and to manage program sizes over the evolutlondry process.
The results on the drug broavar]abllrty and Pagxe-l problems

-as-beneham.:ks?’demonstrate that ULTRA can produce M dramatw 1mprovemems
both with respect to problem-solving power and with respect to managing program
sizes. However, it should be noted that these problems do not rely on the hierarchical
structure of Push programs when ULTRA is being used since they do not involve
code manipulation instructions. A solution to one of these programs would, because
of the way that the Push interpreter interprets programs, work just as well with its
parentheses moved to different locations or eliminated entirely. Parentheses matter
for these problems when traditional subtree-replacement operators are being used
because parentheses delineate the units that can be replaced, but when only ULTRA
is being used their effects would be limited to providing sites for insertion of
new instructions via mutation, and for influencing the effects of deviations during
alternation in minor ways.

346



(AUtNor s rFroor |

AQ2

L. Spector and T. Helmuth
References

Crawford-Marks R, Spector L (2002) Size control via size fair genetic operators in the PushGP
genetic programming system. In: GECCO 2002: proceedings of the genetic and evolutionary
computation conference, New York. Morgan Kaufmann, pp 733-739

D’haeseleer P (1994) Context preserving crossover in genetic programming. In: Proceedings of the
1994 IEEE world congress on computational intelligence, Orlando, vol 1. IEEE, pp 256-261

Harper R (2012) Spatial co-evolution: quicker, fitter and less bloated. In: GECCO ’12: proceedings
of the fourteenth international conference on genetic and evolutionary computation conference,
Philadelphia. ACM, pp 759-766

Helmuth T, Spector L (2013) Evolving a digital multiplier with the PushGP genetic programming
system. In: Workshop on stack-based genetic programming (in i

Kennedy CJ, Giraud-Carrier C (1999) A depth controlling strategy for strongly typed evolutionary
programming. In: Proceedings of the genetic and evolutionary computation conference,
Orlando, vol 1. Morgan Kaufmann, pp 879-885

Koza JR (1992) Genetic programming: on the programming of computers by means of natural
selection. MIT, Cambridge

Langdon WB (2000) Size fair and homologous tree genetic programming crossovers. Genet
Program Evolvable Mach 1(1/2):95-119

Langdon WB, Poli R (2002) Foundations of genetic programming. Springer. http://www.cs.ucl.ac.
uk/staff/W.Langdon/FOGP/

Luke S, Panait L (2002) Is the perfect the enemy of the good? In: GECCO 2002: proceedings of the
genetic and evolutionary computation conference, New York. Morgan Kaufmann, pp 820-828

Luke S, Panait L (2006) A comparison of bloat control methods for genetic programming. Evol
Comput 14(3):309-344

McDermott J, White DR, Luke S, Manzoni L, Castelli M, Vanneschi L, Jaskowski W, Krawiec K,
Harper R, De Jong K, O’Reilly UM (2012) Genetic programming needs better benchmarks.
In: GECCO ’12: proceedings of the fourteenth international conference on genetic and
evolutionary computation conference, Philadelphia. ACM, pp 791-798

Moraglio A, Krawiec K, Johnson CG (2012) Geometric semantic genetic programming. In: Parallel
problem solving from nature, PPSN XII (Part 1), Taormina. Lecture notes in computer science,
vol 7491. Springer, pp 21-31

Niehaus J, Banzhaf W (2003) More on computational effort statistics for genetic programming. In:
Genetic programming, proceedings of EuroGP’2003, Essex. Lecture notes in computer science,
vol 2610. Springer, pp 164-172

O’Neill M, Ryan C (2001) Grammatical evolution. IEEE Trans Evol Comput 5(4):349-358.
doi:10.1109/4235.942529

Page J, Poli R, Langdon WB (1998) Smooth uniform crossover with smooth point mutation in
genetic programming: a preliminary study. Technical report CSRP-98-20, School of Computer
Science, University of Birmingham. ftp:/ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-
20.ps.gz

Pagie L, Hogeweg P (1997) Evolutionary consequences of coevolving targets. Evol Comput
5(4):401-418

Perkis T (1994) Stack-based genetic programming. In: Proceedings of the 1994 IEEE world
congress on computational intelligence, Orlando, vol 1. IEEE, pp 148-153

Poli R, Langdon WB (1998) On the search properties of different crossover operators in genetic
programming. In: Genetic programming 1998: proceedings of the third annual conference,
University of Wisconsin, Madison. Morgan Kaufmann, pp 293-301

Poli R, Page J (2000) Solving high-order Boolean parity problems with smooth uniform crossover,
sub-machine code GP and demes. Genet Program Evolvable Mach 1(1/2):37-56

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk, http://www.gp-field-
guide.org.uk, (With contributions by J. R. Koza)

436

437

439

451

453

459

470
a7
472
473
474
475
476
477
478
479

482

= ) Amcterdlam, ACM | pp 1627-1634



(AULNOrs rroor |

8 Uniform Linear Transformation with Repair and Alternation in Genetic. . .

Schoenauer M, Sebag M, Jouve F, Lamy B, Maitournam H (1996) Evolutionary identification 488
of macro-mechanical models. In: Angeline PJ, Kinnear KE Jr (eds) Advances in genetic 489
programming 2. MIT, Cambridge, chap 23, pp 467488 490

Semenkin E, Semenkina M (2012) Self-configuring genetic programming algorithm with modified 491
uniform crossover. In: Proceedings of the 2012 IEEE congress on evolutionary computation, 492
Brisbane, pp 2501-2506 493

Silva S, Vanneschi L (2009) Operator equalisation, bloat and overfitting: a study on human oral 494
bioavailability prediction. In: GECCO ’09: proceedings of the 11th annual conference on 495

genetic and evolutionary computation, Montreal. ACM, pp 1115-1122 496
Silva S, Vanneschi L (2010) State-of-the-art genetic programming for predicting human oral 497
bioavailability of drugs. In: Advances in bioinformatics. Springer, pp 165173 498

Spector L (2001) Autoconstructive evolution: Push, PushGP, and pushpop. In: Proceedings of 499
the genetic and evolutionary computation conference (GECCO-2001), San Francisco. Morgan 500
Kaufmann, pp 137-146 501

Spector L (2012) Assessment of problem modality by differential performance of lexicase selection 502
in genetic programming: a preliminary report. In: 1st workshop on understanding problems 503

(GECCO-UP), Philadelphia. ACM, pp 401408 504
Spector L, Robinson A (2002) Genetic programming and autoconstructive evolution with the Push 505
programming language. Genet Program Evolvable Mach 3(1):7-40 506

Spector L, Klein J, Keijzer M (2005) The push3 execution stack and the evolution of control. In: 507
GECCO 2005: proceedings of the 2005 conference on genetic and evolutionary computation, 508
Washington, vol 2. ACM, pp 1689-1696 509

Van Belle T, Ackley DH (2002) Uniform subtree mutation. In: Foster JA, Lutton E, Miller J, Ryan 510
C, Tettamanzi AGB (eds) Genetic programming, proceedings of the Sth European conference, 511
EuroGP 2002, Kinsale. Lecture notes in computer science, vol 2278. Springer, pp 152-161 512

White DR, McDermott J, Castelli M, Manzoni L, Goldman BW, Kronberger G, Jaskowski W, 513
O’Reilly UM, Luke S (2013) Better GP benchmarks: community survey results and proposals. 514
Genet Program Evolvable Mach 14(1):3-29 515

> Se,e, QM(A:} ‘(\n( COC'-CO*C& O:\’ﬂ\::oh h\‘cﬂwlt\)"cq,



| AUtNor s rroor |

AUTHOR QUERIES

-AQ1. “Figure 8.4 has been changed to “Table 8.4”. Please check if okay.
AQ2. Please provide proceedings location for “Helmuth and Spector (2013) and
Silva and Vanneschi (2010)”.

2 Mes this 16 okay: Thante yos for the corveckn
) C'N‘(,C}tg, S -\»c)(+.

) (\')ew C-"\’“v"”‘ 7'\‘(‘\-'%’\0&"“""‘\ {Prc\y‘&fa a @w\a.‘t.



