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Comparison of Linear Genome Representations
For Software Synthesis

Edward Pantrdige, Thomas Helmuth, Lee Spector

Abstract In many genetic programming systems, the program variation and execu-
tion processes operate on different program representations. The representations on
which variation operates are referred to as genomes. Unconstrained linear genome
representations can provide a variety of advantages, including reduced complexity
of program generation, variation, simplification and serialization operations. The
Plush genome representation, which uses epigenetic markers on linear genomes
to express nonlinear structures, has supported the production of state-of-the-art re-
sults in program synthesis with the PushGP genetic programming system. Here we
present a new, simpler, non-epigenetic alternative to Plush, called Plushy, that ap-
pears to maintain all of the advantages of Plush while providing additional benefits.
These results illustrate the virtues of unconstrained linear genome representations
more generally, and may be transferable to genetic programming systems that target
different languages for evolved programs.

1 Introduction

Inductive program synthesis is the field of producing executable programs from a set
of input-output examples [7, 14, 16]. General software synthesis refers to the sub-
field of inductive program synthesis in which the programs produced are expected
to be capable of manipulating a variety of data types, control structures, and data
structures. The field of genetic programming has produced some the most capable
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general software synthesis methods, such as PushGP [5], Grammar Guided Genetic
Programming [1], and SignalGP [10]. The experiments and discussion in this paper
focuses on PushGP.

PushGP synthesizes programs in the Push programming language. Push is a
stack-based programming language designed for genetic programming, in which
arguments for instructions are taken from typed stacks and return values are placed
on the stacks [19]. A Push program is a sequence that may contain instructions, liter-
als, and code blocks. A code block is also a sequence that may contain instructions,
literals, and code blocks, allowing for hierarchically nested program structures.

When executed by a Push interpreter, the program itself is pushed onto the exec
stack, a special stack that keeps track of the executing program. During execution,
items from the exec stack are consumed from the program and evaluated sequen-
tially. Literal values are placed onto stacks corresponding to their data types. In-
structions are evaluated as functions that pop their arguments from the stacks and
push their return values back onto the stacks. When code blocks are interpreted,
their contents are unpacked and inserted at the start of the exec stack [19].

Push implementations typically provide instructions and stacks for common data
types such as integers, floating point numbers, Boolean values, and strings. It is also
possible for users to provide stacks and instructions for any other data types they
choose [19, 12]. Since the executing program itself is stored on a stack, instructions
can manipulate the executing code itself as it runs; this functionality is used to
implement both standard and exotic control flow structures using the exec stack.

Like all genetic programming methods, PushGP manipulates “genome” data
structures that correspond to executable programs. In its initial design, the PushGP
genome structure was also the program structure of nested code blocks. With this
representation, it straightforward to implement tree-based genetic operators like
those used in tree-based genetic programming [8], but less straightforward to im-
plement operators that act uniformly on program elements at all levels of nesting
[17].

More recent implementations of PushGP use the Plush linear genome represen-
tation , which can be translated into the hierarchical code block program structure
before execution of the program [6]. This layer of indirection provides flexibility
with respect to which genetic operators can be applied to genomes, specifically with
uniform mutation and crossover operators, which in turn has produced better search
performance [3, 6].

This work compares two linear genome representations, each of which takes a
different approach to the problem of specifying a nested structure in a flat, linear
form. While both Plush and the new genome structure, Plushy, can represent the
same set of Push programs, there are trade-offs between them that may affect evolv-
ability and the dynamics of program size and structure.

We begin by detailing the two genome representations, Plush and Plushy. We
then present experimental results that allow us to compare their search performance
and to examine the effects of each on program structure over evolutionary time.
We discuss factors relevant to choosing among the representations in practice, and
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conclude by recommending the adoption of Plushy genomes in future PushGP work.

2 Linear Genomes: Plush vs. Plushy

Plush [6] and Plushy [13] are two different linear data structures that have been used
to represent genomes in PushGP systems. Both genome representations encode the
nested structure of Push programs, and can be translated into executable programs.
The process of translating a genome into a program will determine which individual
genes should be placed within nested code blocks to produce the structured Push
program.

(5 x int_gt exec_if (3 x int_sub) (x 2 int_mult))

Fig. 1 A simple Push program that takes an integer input x and returns (3 —x) if x > 5, or 2x
otherwise. Note that the program contains two code blocks ( (x) and (x 2 int_mult)), exem-
plifying the nested, non-linear structure of Push programs.

Every instruction gene has a defined number of code blocks expected to follow
the instruction, which is the same number in both representations. For example,
the int_add instruction sums the top two integers on the integer stack, and thus
opens no code blocks. The exec_if instruction takes two code blocks from the
exec stack as arguments: one for holding the body of the “then” clause and one for
holding the body of the “else” clause. If the top value on the Boolean stack is true,
then the code block for the “else” clause is ignored. If the top value on the Boolean
stack is false, then the code block for the “then” clause is ignored. Figure 1 shows a
simple Push program that utilizes this exec_i f instruction.

Just as the exec_1if is defined to require two code blocks to follow it, other
instructions also require specific numbers of code blocks as arguments. Note that
this is a feature of the genome specifications we are discussing, not a requirement
of the underlying Push programs. In fact, when using Push programs as genomes,
there was nothing guaranteeing the presence of code blocks after instructions that
made use of them. Often exec_if and similar instructions would just be followed
by single instructions instead of code blocks; this can sometimes be useful, but it is
often advantageous to have larger code blocks in these positions. When designing
Plush , and afterward when designing Plushy , we chose to force instructions that
can use code blocks to be followed by them, to increase the use of code blocks in
evolved programs [6].

Given that instruction definitions are used to determine where code blocks are
opened, it is left up to the genome representation to determine how to store the
information denoting where each code block is closed.

The Plush genome representation is a flat sequence of instructions and literals.
Each of these tokens is considered a gene of the genome. Each gene also has epi-
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genetic markers that store information that is used when translating the genome
into a program—these are “epigenetic” in the sense that they affect translation into
Push programs, but do not appear in programs themselves. The distinction between
genetic and epigenetic information raises the possibility that the two kinds of in-
formation could be varied in different ways or at different times during evolution.
While in most prior work with Plush, including the experiments described in this
chapter, epigenetic information was only varied during the production of offspring
from parents (like genetic information), previous work has used hill-climbing search
over variation of epigenetic markers to “learn” during an individual’s lifetime [9].
The two kinds of epigenetic markers that have been used in PushGP systems are
“close” and “silent” markers, though others could be created [6] .

The “close” marker is an integer denoting how many code blocks should be
closed directly following that particular gene. This allows the genome to indicate
where code blocks are closed using epigenetic markers attached to specific genes. If
there are no code blocks open at that location, the close maker value is ignored; if
the number of open code blocks is less than the “close” value, then all open blocks
are closed. If some code blocks are left open after the entire program has been trans-
lated, it is assumed the code blocks are closed at the end of the program.

The “silent” marker is a Boolean flag denoting if the gene is silenced. If true, the
gene is skipped during genome translation. Using these markers a genome can hold
genetic material that does not influence the resulting program and potentially pass
it on to it children.

Gene: | 5 X int_gt exec_if x intsqr X 2 int_mult
Closes:| 0 0 2 0 1 0 0 0 0
Silent: |false false false false false true false false false

Fig. 2 One potential Plush genome that produces the program from Figure 1 after translation. The
definition of the exec_if instruction specifies the opening of two code blocks; one for the “then”
clause and one for the “else” clause. The “close” epigenetic marker on the x gene denotes the end
of the “then” clause for the exec_if. There is no gene with a non-zero close marker to denote
the end of the “else” clause, and thus it is assumed to be at the end of the sequence. Notice that
the int_gt instruction closes 2 code blocks despite no code blocks being opened by the previous
genes, and thus these close markers are ignored by translation. The int_sqr instruction is not
translated into the program because it has a true silent marker.

Figure 2 shows a Plush genome that produced the program from Figure 1 when
translated. Due to the separation of genes and their epigenetic markers under this
representation, the Plush data structure can be thought of as a tabular structure since
every gene has a value for every epigenetic marker.

The Plushy genome representation is also a sequence of instruction and lit-
eral genes, however there are additional genes used solely for translation. Plushy
genomes do not use epigenetic markers, but are instead simply flat sequences of
genes. The two additional kinds of genes introduced thus far in Plushy genomes are
CLOSE genes and SKIP genes [13].
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The CLOSE gene denotes the end of a code block. If there are no code blocks
open at that location, the CLOSE is a no-op. If some code blocks are left open after
the entire program has been translated, translation continues as if additional CLOSE
genes are present until all code blocks are closed.

The SKIP gene causes genome translation to ignore the subsequent gene. Much
like the silent epigenetic markers used in Plush genomes, these SKIP genes can
be used to suppress genetic material such that it does not appear in the resulting
program, yet potentially can be passed down to children. SKIP genes also cause a
following SKIP or CLOSE gene to be ignored.

5 x int_gt CLOSE exec_if x SKIP int_sqrt CLOSE x 2 int_mult

Fig. 3 One potential Plushy genome that produces the program from Figure 1 after translation. The
definition of the exec_if instruction specifies the opening of two code blocks; one for the “then”
clause and one for the “else” clause. The end of the “then” clause is denoted by the final CLOSE
gene. There is no CLOSE gene to denote the end of the “else” clause, and thus it is assumed to be at
the end of the sequence. There is no gene that opens a code block before the first CLOSE and thus
it has no effect on translation. The SKIP gene specifies the following gene should not be included
in the translation, which explains why int_sqgrt does not appear in the translated program.

Figure 3 shows a Plushy genome that produces the program from Figure 1 when
translated.

2.1 Random Genome Generation

Random genomes are used to seed the initial population of genetic programming
runs. Each genome type is generated differently to ensure the logic, structure, and
size of the programs in the initial population is diverse.

The instructions and literals in random Plush genomes are typically chosen with
a uniform distribution. The close epigenetic markers in Plush are initialized using a
probability distribution. Sampling the distribution will give the value of the “close”
marker. In previous PushGP research a binomial distribution with n =4 and p =
1/16 is used. This yields the following probabilities for assigning values for the
“close” marker.

Closes [Probability

010.772
1(0.206
210.021
310.001

We do not use “silent” markers in this work.
When generating Plushy genomes , a set of Push instructions and literals pro-
vided by the user is available. Plushy simply adds additional elements to this set for
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the CLOSE and SKIP genes. As described above, the definition of each instruction
in the set denotes how many code blocks are opened by the instruction, based on the
number of arguments it takes from the exec stack.

If the set of genes were randomly sampled with uniform probability, the CLOSE
gene would occur in genomes at a rate of ﬁ, where |S| is the number of available
genes. This likely provides too few CLOSE genes compared to the number of code
blocks opened. Instead, to generate Plushy genomes with a larger proportion of
CLOSE genes, we set the probability of sampling a CLOSE gene proportionally to
the sum of all “open” counts across all instructions. For example, if there are 10
instructions that each open 1 code block, the CLOSE gene is given a 10 times the
probability of being added to the Plushy genome compared to any other instruction.
This results in an average of one CLOSE for every code block opened.

2.2 Genetic Operators

When using Plush genomes , the genes and their epigenetic markers are two sep-
arate values corresponding to the same location in the genome. Genetic operators
can affect either the genes, their epigenetic markers, or both. Uniform crossover
and mutation operators that keep genes with their epigenetic markers have typically
been used [17, 3]. Additionally, specialized genetic operators that do not effect gene
values can be applied to epigenetic markers. For example, a uniform close mutation
operator changes the “close” epigenetic markers by incrementing or decrementing
them by one [6]. This close-marker mutation operator is applied to each gene in the
genome with some configurable probability.

Plushy genomes do not contain epigenetic markers. Genetic operators that ma-
nipulate the genes in the genome are modifying both logic and structure. The uni-
form genetic operators that are applied to Plush can be applied to Plushy, with the
exception of the epigenetic-marker operations. Genetic operators commonly used in
the field of genetic algorithms can also be applied to Plushy genomes.

Genetic operators that add random genes to a Plushy genome , such as a muta-
tion, will utilize the same increased probability of adding a CLOSE gene as seen in
random genome generation discussed in section 2.1.

3 Impact on Search Performance

A genome is the data structure manipulated by genetic operator throughout evolu-
tion. Different genome structures yield different landscapes to search over. Some
landscapes may be more difficult to search through and thus search performance
could be degraded when using certain genome representations.
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3.1 Benchmarks

To evaluate the impact of Plush vs Plushy genomes on search performance, we
tested each on 25 problems from the general software synthesis benchmark suite [5] .
These benchmark problems come from coding assignments traditionally given to
human programmers in introductory computer science classes. For our detailed
analysis of the affects of each genome on evolved program structure, we selected
a representative subset of 10 problems, which are:

e Compare String Lengths. Given three strings (s, s», and s3) return true if
length(sy) < length(sy) < length(s3), and false otherwise.

e Double Letters. Given a string, print the string, doubling every letter char-
acter, and tripling every exclamation point. All other non-alphabetic and non-
exclamation characters should be printed a single time each.

e Last Index of Zero. Given a vector of integers of length < 50, each integer in the
range [—50,50], at least one of which is 0, return the index of the last occurrence
of 0 in the vector.

e Mirror Image. Given two lists of integers of the same length < 50, return true if
one list is the reverse of the other, and false otherwise.

e Negative To Zero. Given a vector of integers in [—1000, 1000] with length < 50,
return the vector where all negative integers have been replaced by 0.

e Replace Space With Newline. Given a string input, print the string, replacing
spaces with newlines. Also, the program should return the integer count of the
non-whitespace characters.

e String Lengths Backwards. Given a vector of strings with length < 50, where
each string has length < 50, print the length of each string in the vector starting
with the last and ending with the first.

e Sum of Squares. Given an integer 0 < n < 100, return the sum of squaring each
positive integer between 1 and » inclusive.

o Syllables. Given a string (max length 20, containing symbols, spaces, digits, and
lowercase letters), count the number of occurrences of vowels in the string and
print that number as X in “The number of syllables is X.”

e Vector Average. Given a vector of floats with length in [1,50], with each float
in [—1000, 1000], return the average of those floats. Results are rounded to 4
decimal places.

For each benchmark problem, 100 runs were performed with each genome type.
All runs were performed with the same configuration of the PushGP system , with
the exception of the genome type used. The hyperparameter values used to config-
ure the PushGP system are presented in Figure 4. We use size-neutral uniform mu-
tation with addition and deletion (UMAD) to make all children for both Plush and
Plushy [3]. UMAD, with an addition rate of 0.09, adds a new random instruction be-
fore or after each instruction with 0.09 probability; it then deletes each instruction

in the program with probability LIH ~ 0.08257 to remain size-neutral on aver-

0.09
age. Note that we do not use any crossover here; while crossover may play some
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Parameter | Value

Runs per setting 100

Population size 1000

Max number of generations|300

Genetic operator UMAD, used to make all children

UMAD addition rate 0.09

max genome size varies per problem, but same for Plush and Plushy

Fig. 4 The configuration of the Clojush PushGP system for the experimental runs performed for
this research. We leave the tuning of these configurations for each genome type as future research.

role in deciding which representation to use, UMAD by itself has outperformed any
crossover technique we have tried, so we used it here. The initial and maximum
genome sizes vary per problem, and follow the recommendations from the bench-
mark suite’s technical report [4].

3.2 Benchmark Results

Figure 5 shows the number of solutions found by the genetic programming runs
using Plush or Plushy genomes for all problems. Only one of the differences in suc-
cess rate is significant using a Chi-squared test at a = 0.05: the Syllables problem.
All other problems show no significance in the difference in numbers of successes.
This shows that, at least for these program synthesis problems and hyperparameter
settings, the choice of genome between Plush and Plushy has little to no effect on
performance. Thus the choice to use Plush or Plushy should be based not on their
effects on performance, but instead on other considerations such as flexibility with
respect to genetic operators and the required amount of hyperparameter tuning.

4 Genome and Program Structure

Push programs have meaningful structure organized by code blocks, which affect
the semantics of programs, particularly with respect to control flow. When evaluat-
ing genome representations , we therefore consider program structure in addition to
search performance.

4.1 Sizes

Figure 6 shows a comparison of genome lengths produced during PushGP runs for
each genome representation for 10 representative problems. Plushy genomes tend
to be slightly longer than Plush genomes . This is to be expected because Plushy
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Genome Type plush . plushy

Checksum Count Odds CSL Digits Double Letters | | Even Squares | | For Loop Index

100
75

50

; B
ol || e |

Grade LlozZ Median Mirror Image | Negative To Zerg Number 10 Pig Latin

100

75

50

25

RSWN Scrabble Score SLB Small Or Large Smallest Sum of Squares| [Super Anagrams

100

Solution Rate (%)

75
50

25

0 | - . —

T T T T T T
Syllables Vector Average | Mectors Summed | X-Word Lines plush plushy  plush plushy  plush plushy

100

75

50

25

0 ||
p|ljSh plulshy p|ljSh plulshy p|LjSh plu'shy p|u.Sh plulshy
Genome Type

Fig. 5 The rate of solutions found using Plush genomes versus Plushy genomes. A genome is
a solution if it receives an error of zero on all cases in a previously unseen test set after being
simplified by an automatic simplification algorithm [2]. Each genome representation was evalu-
ated across 100 runs for each problem. The difference in solution rates is only significant for one
problem, “Syllables*, shown with a black outline. On the “Syllables” problem the Plushy genome
produces more solutions.

genomes require explicit close genes, increasing the size of genomes, whereas
Plush stores “close” markers as epigenitic markers that do not contribute to genome
size.

The examples from previous sections also illustrate the difference in size. The
Plush genome in Figure 2 contains 9 genes. The Plushy genome in Figure 3 contains
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Genome Type plush === plushy
compare_string_lengths double_letters last_index_of_zero mirror_image
2507 M

200+

1504 '\_\

100+ M
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"% negative_to_zero replace_space_with_newline | string_lengths_backwards sum_of_squares
250+

() o

gZOO A ,’J M

§ 1507 N
S

8:100- \-—-’l

© 504

o T v T L v T .
32 syllables vector_average 0 100 200 3000 100 200 300

250+

2001 L\-‘/"
150+
1004 \\___‘

504

0 100 200 3000 100 200 300
Generation

Fig. 6 Average Plush and Plushy genome lengths for all benchmark problems, averaged across all
benchmark runs.

12 genes. Both genomes translate into program in Figure 1, and both genomes only
silence/skip one gene.

Figure 7 shows a comparison of program sizes produced during PushGP runs for
both genome representations. Despite producing longer genomes, the Plushy data
structure tends to translate into slightly smaller programs. This further confirms that
the difference lengths was due to CLOSE genes, which affect genome lengths but
not program sizes.

It seems as though the Replace Space With Newline problem is an outlier for both
genome and program sizes. Genome and program sizes tend to be similar for Plush
and Plushy experiments in the early generations. In later generations, the Plushy
genomes and programs far exceed the size of their Plush counterparts. Since a large
number of runs had finished by that point (by finding a solution), this can likely be
attributed to a small number of outliers for each drastically changing the average of
the remaining runs.

Push programs are nested structures of code blocks. It is possible to measure the
maximum depth of a program. We refer the maximum depth of a program as the
program’s depth. Figure 8 shows that Plush genomes and Plushy genomes tend to
produce similar program depths. The Sum of Squares problem is a drastic outlier
here, with programs translated from Plush genomes tending to have roughly twice
the depth of the programs translated from Plushy genomes.
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Genome Type plush === plushy
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Fig. 7 Average Push program sizes produced using Plush and Plushy genomes for all benchmark
problems, averaged across all benchmark runs.

It is important to note that these genome representations do not have direct ef-
fects on program depth, as only the instructions they contain dictate where and how
many code blocks are opened. Thus any differences here come about by evolution-
ary pressures. So, it may be the case that for the Sum of Squares problem the way
in which Plushy genomes close code blocks made it evolutionarily advantageous to
have more nested instructions than with Plush.

4.2 Presence of “Closing” Genes

As PushGP searches for solution programs, it manipulates genomes such that the
logic and structure of the resulting programs is varied generation to generation. Fig-
ure 9 shows the prevalence of “closing” genes in both kinds of genomes as evolution
progresses. For Plush genomes, this is the percentage of genes in the genome with
a non-zero close epigenetic marker. For Plushy genomes, this is the percentage of
CLOSE genes in the genome.

The levels of “closing” genes stay relatively stable for both Plush and Plushy
throughout evolutionary time, often ending with approximately the same percentage
of closing genes as in the initial generation. These flat trends indicate that the levels
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Fig. 8 Average program depths produced using Plush and Plushy genomes for all benchmark prob-
lems, averaged across all benchmark runs.

of closing genes are largely dictated by the percentage of close epigenetic markers
/ CLOSE genes present in random code created during initialization and mutation,
and are not reflective of evolutionary pressures toward higher or lower levels. The
percentage of close markers with Plush starts around the same level (around 0.25)
for every problem, as would be expected with the hard-coded probabilities of close
markers as described earlier. The percentage of CLOSE genes in random Plushy
genomes depends on the instruction set, and will therefore be different for these
different problems, which use differing instruction sets. This explains the high level
of CLOSE genes for the Sum of Squares problem, which uses a higher percentage
of exec stack instructions (those responsible for opening code blocks) compared to
the other problems here. Despite the adaptive prevalence of CLOSE genes offered by
Plushy as discussed in section 2.1, it is interesting to recall the lack of significantly
different solution rates reported in Figure 5. This suggests that the performance of
evolution is not particularly sensitive to the prevalence of “closeing” genes.

As demonstrated in Section 2, when using either Plush or Plushy it is possible to
have “closing” genes that have no impact of the structure of the resulting program
because they occur at locations in the genome where no code blocks are open. In
order to compare the number of close genes that are having impact on program
structure, we must compare the number of code blocks found in programs translated
from each genome representation.
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Fig. 9 The percentage of “closing” genes observed when using Plush and Plushy genomes for all
benchmark problems, averaged across all benchmark runs. For Plush genomes, this is the percent-
age of genes in the genome with a non-zero close epigenetic marker. For Plushy genomes, this is
the percentage of CLOSE genes in the genome.

Figure 10 shows the average number of code blocks in translated programs di-
vided by the program size.

All problems show that Plush genomes tend to have a slightly higher concentra-
tion of code blocks in the translated programs. The range of differences between
experiments using Plush genomes and experiments using Plushy genomes is very
narrow, suggesting that the genome representation has very little bearing on the
concentration of code blocks in a program. The small differences here likely reflect
the fact that even though the genome sizes are the same, the Plush genomes will
contain more actual instructions compared to Plushy genomes, for which use some
genes are CLOSE genes, leading to slightly higher numbers of instructions that open
code blocks in Plush genomes.

5 Other Considerations

Section 3 discussed how Plush and Plushy genomes have nearly identical search
performance. The various measurements presented in Section 4 show that programs
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Fig. 10 The average number of code blocks divided by the average program size observed when
using Plush and Plushy genomes for all benchmark problems, averaged across all benchmark runs.
The plot shows a clear similarity between genome representations, especially considering the nar-
row range of the y-axis.

produced while using the different genome representations are usually similar. This
may seem to indicate the choice between Plush and Plushy genomes is inconse-
quential, but in practice there are important differences regarding their effects on
usability and ease of implementation.

5.1 Hyperparameter Fitting

Most machine learning systems have a collection of hyperparameters that can be
tuned to problem-specific values that improve performance. Typically hyperparam-
eters for genetic programming systems include the population size, mutation rates,
and parent selection methods. Grid search is a common method of tuning hyperpa-
rameters by exhaustively evaluating sets of values taken from a grid of hyperparam-
eter values.

As mentioned in Section 2.1, the Plush genome representation requires a prob-
ability distribution to generate epigenetic marker values for random code for ini-
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tialization and mutation. Probability distributions are difficult hyperparameters to
tune.

All previous research using Plush genomes assumes a binomial distribution of
initial values for epigenetic markers, although this has not been proven to be op-
timal via theoretical analysis nor empirical experimentation, and in fact has never
been tuned. We believe that they are relatively robust to moderate change. How-
ever, it is possible that better-tuned values may lead to better performance than has
been seen previously. Even if the optimal distribution is a binomial distribution in
all cases, there are two hyperparameters to tune (n and p) for initial close marker
assignment alone. If the optimal type of probability distribution is problem specific,
the number of hyperparameters is unknown. This further complicates the tuning of
hyperparameters that is required when using the Plush genome representation. Typ-
ically, the computational cost of tuning all hyperparameters drastically increases as
the number of hyperparameters increases.

In contrast, when using Plushy genomes the choice of which instructions can
appear in the instruction set determines both structure and logic. No additional hy-
perparameters are required specifically to initialize the CLOSE genes. Furthermore,
when using Plushy genomes the proportional rate of CLOSE genes presented in
Section 2.1 agrees with the intuition on how many CLOSE genes should appear in
a random program and is suitable for most cases. Using this method of generating
random genomes, there are no hyperparameters to tune when using Plushy genomes.

Section 2.2 discussed the separate set of genetic operators that can be used to vary
the epigenetic markers on genes in Plush genomes. These mutation operations often
require their own hyperparameter tuning for values such as mutation rate. When
using Plushy genomes, there is no need for genetic operators that vary epigenetic
markers, and thus no additional tuning is required.

It is possible that future research will produce genetic operators that specifically
target the CLOSE and SKIP genes of Plushy genomes. These operators may expand
the space of hyperparameters.

5.2 Applicable Search Methods

The field of inductive program synthesis has a large variety of methods undergoing
active research across many problem domains. There is no clear superior family of
algorithms that dominate the field. It is in the best interest of the field to compare
and evaluate as many systems as possible to gain a better understanding of their
behaviors.

Nearly every program synthesis method has a different approach to representing
programs. This heterogeneity makes comparisons of different search methods on
the same problems difficult [11] . The simplicity of the Plushy genome facilitates
such comparisons better than the Plush genome because any search method capable
of making changes to a sequence of tokens can be used to search over the space
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of Plushy genomes. Some examples of algorithms that could be used to search for
solution Plushy genomes are:

Evolutionary algorithms such as genetic algorithms and evolution strategies.
Traditional local search methods such as simulated annealing and hill climbing.
’Sequence to Sequence” neural architectures that are commonly used to synthe-
size sentences of natural language.

e Brute force combinatorics.

In contrast, Plush genomes require that each step in the search account for both
gene tokens and their epigenetic markers. It is not immediately clear how a given
search procedure should coordinate searching through genome space and epigenetic
marker space in tandem, illustrating the complexity added by the epigenetic markers
compared to CLOSE genes.

5.3 Automatic Simplification

Previous research on PushGP has detailed algorithms for automatically simplifying
Push programs and Plush genomes [20, 15, 2]. This process uses hill climbing on
program or genome size by randomly removing a small set of genes and testing that
the program’s outputs remain unchanged on the training data. If not, the genes are
not removed, and a new random set of genes is removed, and the program is tested
again. This process typically reaches a local size optimum within a few thousand
iterations [18].

Automatic simplification was originally intended to yield programs that are eas-
ier for humans to understand [18, 20, 15], however it has also been shown that apply-
ing automatic simplification after evolution often produces programs that generalize
better to unseen data [2]. In this sense, automatic simplification can be thought of as
a regularization step for evolutionary program synthesis methods.

The solution rates reported in Figure 5 are for simplified programs on a held-out
test set (that is, a test set not used during evolution). In this case, we automatically
simplified the Push programs, not the genomes, so there should be no difference
in simplification for those results. However, previous work described alternative
methods for simplifying Plush genomes directly before translation [2], and we could
also imagine automatically simplifying Plushy genomes.

When simplifying Plush genomes, we can randomly turn on a small number of
“silent” epigenetic markers during a hill-climbing step, effectively removing the
genes without losing their information. This allows for backtracking of the hill-
climbing by unsilencing those genes at a later time, potentially allowing the process
to escape local optima. This leads to smaller Push programs than non-backtracking
approaches, though it only produces negligible gains in generalization [2].

When applying the same automatic simplification process to Plushy genomes, it
is possible for a set of CLOSE or SKIP genes to be removed without the modifica-
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tion of any genes that encode instructions. We leave it to future research to perform
arigorous study on the impact this has on generalization or interpretability.

5.4 Serialization

The main artifact of inductive program synthesis systems is the solution program
found by the search. In PushGP, this artifact is typically either an executable Push
program or a genome that can be translated into a Push program. In practice these
solutions need to be serialized, stored, and recalled for later use.

Serializing Push programs requires the serialization of a nested structure of code
blocks, literals, and instructions. One benefit of using a linear genome representation
is that the solution’s genome is often easier to serialize and de-serialize than the
program.

Serializing Plush genomes requires denoting the gene value and the value for
all epigenetic markers at every location in the genome. Serializing Plushy genomes
only requires serializing the gene values. The simplicity of Plushy cuts down on the
size of serialized genomes and improves interpretation and ease of de-serialization.

5.5 New Epigenetic Markers for Plush

One of the inspirations for the development of Plush genomes was the ability to add
new epigenetic markers to add new data to the genome. We have discussed two such
epigenetic markers that have easy translations to the Plushy representation: “close”
and “silent” markers. However, we could imagine (and have experimented with)
other epigenetic markers that would be more difficult to add to Plushy genomes.
For example, we have experimented with the idea of adding “crossover hot-spots”,
which are locations in the genome where crossover is more likely to occur than in
other locations. This is easy to envision as a new epigenetic marker, whereas it is
not obvious how this feature would be added to Plushy genomes.

However, we have yet to find a specific use of a new epigenetic marker that
actually improves performance of PushGP in practice. We therefore recommend
keeping this ability in mind as a possible advantage of Plush—a context in which
the complexity of Plush could add to its utility in comparison to Plushy.

6 Conclusion

We have compared two genome representations for evolving Push programs, Plush and
Plushy . Experiments using the Clojush implementation of PushGP showed that the
choice of representation has little effect on the problem-solving power of the ge-
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netic programming system, making it impossible to recommend one representation
over the other on the basis of problem-solving performance alone. We also explored
other qualities of the programs evolved using each representation, and found some
minor differences in genome/program sizes, numbers of closing genes, and numbers
of code blocks in the translated Push programs. While these differences are interest-
ing and potentially could impact problem-solving performance on other problems,
they appear incidental in the problem-solving performance results in this study.

We then discussed at the qualitative aspects of each representation. Plushy re-
quires fewer hyperparameters to be tuned than Plush, since the number of CLOSE
genes to include is determined from the instruction set, whereas Plush requires at
least one to use (and potentially to tune) hyperparameters that determine the dis-
tribution of “close” epigenetic markers in randomly-generated genes. Additionally,
the simplicity of Plushy compared to Plush makes it easier to apply non-genetic-
programming search methods and to serialize genomes.

After comparing the two representations, we recommend using Plushy genomes
for the evolution of Push programs in most settings. Since both representations
achieve similar problem-solving performance, Plushy’s simplicity makes it more
versatile and easier to use.
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