
Chapter 1

GENETIC PROGRAMMING WITH HISTORICALLY
ASSESSED HARDNESS

Jon Klein1 and Lee Spector1
1Cognitive Science, Hampshire College, Amherst, MA USA 01002-3359

Abstract
We present a variation of the genetic programming algorithm, called Histor-

ically Assessed Hardness (HAH), in which the fitness rewards for particular test
cases are scaled in proportion to their relative difficulty as gauged by historical
solution rates. The method is similar in many respects to some realizations of
techniques such as implicit fitness sharing, stepwise adaptation of weights and
fitness case selection, but the details differ and HAH is generally simpler and
more efficient. It also leads to different generalizations. We present results from
large-scale, systematic tests of HAH and we also discuss the technique in terms
of the alternative explanations that it supports for the efficacy of implicit fitness
sharing and related methods.

Keywords: historically assessed hardness, implicit fitness sharing, Push, PushGP

This is a preprint copy of:

Klein, J., and L. Spector. 2008. Genetic Programming with Historically Assessed Hardness.
In Genetic Programming Theory and Practice VI, edited by R. L. Riolo, T. Soule, and B. Worzel.
New York: Springer-Verlag. In press.

NOTE: The chapter and page numbers on this copy are not final.

2 GENETIC PROGRAMMING THEORY AND PRACTICE III

1. Introduction
Some problems are harder than others. Within the context of a single prob-

lem, some test cases are generally harder than others. Good performance on the
hard cases is probably more valuable, all other things being equal, than good
performance on the easy cases. How can this differential value be incorporated
into the reward function of a machine learning system? Will the incorporation
of differential rewards based on problem/case difficulty improve the system’s
learning performance?

In this chapter we address these questions in the context of genetic program-
ming (Koza, 1992), in which the reward function is called a “fitness function”
and test cases are called “fitness cases.” We provide a simple mechanism for
giving greater fitness rewards for good performance on harder fitness cases,
and we describe the mechanism’s impact on performance and relation to other
techniques.

“Hardness,” however, is not itself a simple concept. Some of the hardness
of a fitness case may be intrinsic to the problem that we are trying to solve,
or at least to the relation between the problem and the problem-solving tools
provided by the genetic programming system. For example, suppose that we
are working on a symbolic regression problem, trying to discover a formula
that explains a data set, and that the correct answer has a form like:

y =


x+ 0.4 if x > π

x− 0.4 if x < −π
1.07x11 − 11xπ + πx if − π ≤ x ≤ π

Clearly there is a sense in which the cases with x values between −π and π
are harder, but is this really an intrinsic property of the problem? Suppose that
the genetic programming function set includes standard arithmetic operators,
a conditional control structure, and a general exponentiation function, but that
the available constants are just those in the set:

{π,−π, 1.07, 11}

Note that this set does not include the constant 0.4 or “ephemeral random
constants” that could produce 0.4. Furthermore, while it is possible to con-
struct 0.4 using the provided constants and standard arithmetic operators it is
not trivial to do so. It therefore seems likely that it will actually be easier to
produce formulae for cases with x values between −π and π. So at least some
of the hardness of a fitness case may be due to the match between the problem
and the functions and constants that are available to the genetic programming
system. Whether or not there is a meaningful sense in which fitness cases have
“intrinsic” hardness independent of these factors is a complex question that we

Genetic Programming with Historically Assessed Hardness 3

will not address here, but clearly there are components of hardness that derive
from the conjunction of particular problems with particular constraints on the
elements out of which solutions can be constructed.

Other aspects of fitness case hardness will derive from the implementation
choices made by the user, including the choice of program representation (for
example, whether programs are represented as trees, linear strings, grammati-
cal derivations, etc.), the choice of genetic operators (including various types
of mutation and crossover), and choices of parameters (including the propor-
tion of each generation produced by each of the chosen genetic operators).
These choices collectively define the ways in which a population of programs
can be transformed from generation to generation. In combination with the
fitness function they define the fitness landscape that genetic programming can
search. On some such landscapes programs that perform correctly on partic-
ular fitness cases will be more or less accessible than they are on other such
landscapes; therefore, within the context of particular implementation choices
some fitness cases will be harder or less hard than they are in the context of
other implementation choices.

A final meaning of hardness grows out of a population’s current distribution
on a fitness landscape, which in turn determines how easily the population can
move towards a solution. For example, it is widely accepted that genetic di-
verisity is a beneficial trait of a genetic programming population because a di-
verse population is likely to achieve a more thorough exploration of the fitness
landscape. Likewise, a population that is mostly centered around steep local
maxima is likely to perform worse than a population of equal (or even worse)
average fitness that is positioned better relative to the desired solution. This
form of hardness is not intrinsic to a problem and changes dramatically across
and even during genetic programming runs. Because of its unpredictability and
dynamic nature, this form of hardness may be difficult to counteract using non-
dynamic strategies such as changing a problem’s representation or modifying
a run’s parameters.

Hardness based on the population distribution derives in large part from
“choices” made by the random code generator at the start of a genetic program-
ming run and from other partially-random events such as choices of crossover
points and new code produced by mutation. Such events can affect the hard-
ness of particular fitness cases in several ways. For example, if particular func-
tions or constants that are needed for some cases are rare in the initial popu-
lation of a run then those cases may appear to be harder in the context of that
run. Similarly, an initial population that contains a large number of individuals
that do well on a particular subset of the fitness cases may lead to subsequent
generations dominated by individuals that “specialize” in these cases, making
progress on the other cases more difficult.

4 GENETIC PROGRAMMING THEORY AND PRACTICE III

Our goal in the present project is to develop a method that focuses a ge-
netic programming system’s effort on the hard cases, regardless of the nature
or source of the underlying hardness. We want to give more rewards for doing
well on the hard stuff—for performing better on the more challenging fitness
cases—regardless of whether the hardness is due to intrinsic difficulty, repre-
sentation and implementation decisions, historical “accidents” in a particular
run, or combinations of these and other factors. We have accomplished this by
developing a technique in which hardness is gauged historically, on the basis
of solution rates in the current run. This is easy to do and it captures, in some
sense, all of the sources of hardness described above. As we show below, it
also seems to produce significant improvements in genetic programming per-
formance, at least in the contexts in which we have tested it.

Some aspects of our new technique, when viewed at the implementation
level, are similar to aspects of other techniques such as “implicit fitness shar-
ing” (sometimes also called “phenotypic fitness sharing”), “stepwise adapta-
tion of weights,” and various methods for selecting fitness cases. But these
techniques all differ from our new technique both conceptually and with re-
spect to their potential extensions. We discuss the relations between these
techniques below, after the presentation of our new method.

2. Historically Assessed Hardness
Our new method, genetic programming with Historically Assessed Hard-

ness (HAH), involves the scaling of values for individual fitness cases based
on their empirically determined difficulty. As in much of the literature, we
phrase our discussion here in terms of fitness values that are based on errors,
and lower values (derived from smaller errors) are better than larger values
(derived from higher errors). In this context, most traditional genetic program-
ming systems compute the overall fitness Fi of individual i for n fitness cases
as the sum of the absolute value of individual error |e| for each case c; we call
this the “unscaled summation” method:

Fi =
n∑
c=0

|ec|

In HAH we differentially scale the individual terms in this summation, and
there several ways in which this can be done. In all of the methods that we
have studied the scaling function involves a historically assessed solution rate
for the individual case, designated here as sc. This solution rate can itself be
calculated in several ways; those that we have tested are:

Previous Generation sc is the fraction of the individuals in the previous gen-
eration that produced the correct answer for fitness case c.

Genetic Programming with Historically Assessed Hardness 5

Current Generation sc is the fraction of the individuals in the current gener-
ation that produce the correct answer for fitness case c. Note that this re-
quires that the scaling be performed in a second pass through the current
generation, after errors have been calculated for all individuals. Because
of the extra pass required, we do not advocate the use of this method,
but we include it in our experiments for the sake of comparison against
implicit fitness sharing.

Cumulative sc is the fraction of all previously-evaluated individuals in the
current run that produced the correct answer for fitness case c. We base
this on the errors of all individuals in all previous generations of the
current run.

Cross-Run sc is the fraction of all individuals in a previous, independent run
of genetic programming that produced the correct answer for fitness case
c. The independent run (from which the rates are derived) is conducted
using the unscaled summation (standard) method for fitness case combi-
nation.

However the solution rates (sc values) are calculated they can be used in a
variety of ways to scale the individual errors for each case. We have explored
two such methods:

Difference In this method the solution rates, which run from 0 to 1, are sub-
tracted from 1.01 and the product of this difference and the raw error
value is used as the scaled value:

Fi =
n∑
c=0

(1.01− sc)|ec|

The difference is calculated from 1.01 rather than 1.0 to avoid producing
a scaled error of 0, which would be interpreted as success in the rare (but
possible) circumstance that ec is non-zero and sc is 1.

Quotient In this method the solution rate is multiplied by the population size
and divided into the the raw error:

Fi =
n∑
c=0

|ec|
1 + (sc ∗ P)

The “+1” in the denominator prevents division by zero.

In both of these methods the error for each fitness case is scaled in a way
that makes it larger when the solution rate for the case is smaller and smaller
when the solution rate for the case is larger. In other words, errors count more
(and therefore good performance is rewarded more) for cases that are harder.

6 GENETIC PROGRAMMING THEORY AND PRACTICE III

3. Related Techniques
Historicallly Assessed Hardness is similar in many respects to a number of

existing and well-studied techniques in evolutionary computation, including
implicit fitness sharing, stepwise adaptation of weights, and other methods for
the selection or weighting of fitness cases such as boosting and bagging (Iba,
1999). Given certain parameters, constraints and problem types, HAH may
even be identical to some realizations of these methods.

Broadly stated, what these methods have in common is the scaling of fitness
or error values for individual fitness cases based on some heuristic. The de-
tails of the methods differ: the scaling values may be computed dynamically
at each generation, or at discrete points within a run; the scaling values may be
continuous, or they may be binary (e.g. some techniques for fitness case selec-
tion can be described as using a scaling of 0.0 for non-active fitness cases); the
scaling values may be computed based on a population’s current performance,
or on other heuristics.

A full comparison of HAH to all related methods is beyond the scope of this
chapter, but we do compare it to a few of its closest relatives in the following
sub-sections. For these, and for the others of which we are aware, the bottom
line appears to be that while there are overlaps among the techniques each leads
to different generalizations and HAH is the simplest method to implement.

Implicit Fitness Sharing
Fitness sharing is a technique for improving the performance of evolutionary

computation systems, ostensibly by promoting diversity among the evolving
population. In the original formulations of fitness sharing (Deb and Goldberg,
1989) fitness payoffs were reduced in densely populated regions of the search
space by performing genotypic analysis and by sharing a local fitness budget
among genotypically similar individuals (which collectively form a “niche”).
This approach explicitly addresses population diversity at the expense of po-
tentially costly genotype analysis to determine the niches (potentially O(N2)
(Sareni and Kr-ahenb-uhl, 1998)). Further refinements of fitness sharing address
concerns raised by the difficulty of genotypic analysis by assigning niches
based on phenotypic analysis of the similarity of fitness profiles over all test
cases. Phenotypic analysis may lead to simpler pairwise analysis of individu-
als, but it still leads to combinatorial problems in determining niches.

Implicit fitness sharing (Smith et al., 1993; McKay, 2001) foregoes the ex-
plicit computation of genotypic or phenotypic niches by divvying up fitness
rewards for individual fitness cases based on the number of individuals that
produce the same prediction. Although this avoids the need for the explicit
computation of differences between individuals, it does require population-
wide statistics to be calculated in a multi-pass fashion: the number of indi-

Genetic Programming with Historically Assessed Hardness 7

viduals sharing the fitness reward is not known until all individuals have been
evaluated, so a second pass must be made through the population to compute
fitness values. In the terminology of Section 2, implicit fitness sharing, at least
when applied to Boolean problems, is nearly equivalent to HAH with error
rates determined from the current generation and individual errors combined
using the quotient method. Note, however, that this is a relatively complicated
version of HAH to implement because it requires multiple passes through the
population in order to make use of the statistics of the current generation. The
other versions of HAH all differ from fitness sharing at the implementation
level and are all simpler and more efficient to implement than implicit fitness
sharing. In fact, when the “cross-run” version of the technique is used it is not
necessary to compute any run-time population statistics at all, and although this
version is far less effective than the others it nonetheless sometimes provides a
benefit over traditional genetic programming.

The differences in the implementations of HAH and implicit fitness shar-
ing stem from the fundamental differences in the theoretical underpinnings of
the techniques. Fitness sharing was motivated by a desire to maintain popula-
tion diversity, while HAH is intended to focus search on the difficult parts of
a problem. Sometimes these goals overlap, and in some cases both goals may
be served by the same modification to the standard genetic programming tech-
nique. But even in such cases the differences in theoretical underpinnings lead
to different ideas for extension and generalization and to different explanations
of the successes or failures of the techniques in particular circumstances.

A somewhat subtle difference between HAH and implicit fitness sharing,
which nonetheless has practical implications, concerns the way in which fitness
is shared between individuals. HAH scales fitness rewards/penalties according
to the proportion of individuals that produce the correct answer, while fitness
sharing divides fitness values among all individuals with the same answer, cor-
rect or incorrect. For problems with Boolean outputs, in which all incorrect
answers for a particular fitness case are necessarily identical, this distinction
has no practical impact. For problems in which different incorrect answers
may receive different fitness penalties, however, fitness sharing and HAH dif-
fer significantly. HAH, as defined above, will still scale all fitness penalties
(including penalties for suboptimal solutions) by a case’s overall solution rate,
while fitness sharing will divide fitness rewards based on the number of indi-
viduals producing the same result. For individuals that belong to groups that
do not produce the optimal answer, their scaling factor with fitness sharing will
not be equal to the fitness case solution rate.

Another way to think about the difference between fitness sharing and HAH
is that fitness sharing schemes typically treat fitness rewards as zero-sum re-
sources that are divided up equally among all individuals that produce the same
response. HAH differs philosophically from fitness sharing on this point: in

8 GENETIC PROGRAMMING THEORY AND PRACTICE III

HAH fitness rewards or penalties are scaled in order to promote the solution
of difficult problems, not to treat fitness as a zero-sum resource. Treating fit-
ness as a zero-sum resource leads to an extreme focus on promoting popula-
tion diversity, even at the expense of high-quality individuals. This can lead
to pathological cases in which an individual that finds only a few correct re-
sponses can be awarded a better fitness than individuals that perform far better
but also produce correct outputs on fitness cases that are solved by many other
individuals. Because implicit fitness sharing does not use any actual (i.e., ex-
plicit) measure of similarity between individuals, there is no assurance that the
individuals sharing fitness are actually similar, either genotypically or pheno-
typically (because the fitness reward sharing is done on a per-fitness-case basis,
not accounting for an individual’s entire phenotypic profile).

Stepwise Adaptation of Weights
Stepwise Adaptation of Weights (SAW) is a related technique which mod-

ifies a fitness landscape by scaling an individual’s error values based on a set
of evolving weights. The technique was originally applied to constraint satis-
faction problems in which the weights were applied to individual constraints
(Eiben and van Hemert, 1999), but has also been applied to genetic program-
ming (and symbolic regression in particular) by applying the weights to indi-
vidual fitness cases (Eggermont and van Hemert, 2000).

When applied to symbolic regression problems, SAW resembles HAH in
that weights are modified according to performance on a set of fitness cases,
but the details of how the weights are computed differ greatly between the tech-
niques. In a typical SAW implementation, weight adjustments are performed
according to the performance of the best individual in the population, and only
once every several generations (5-20 in the work on symbolic regression, but
up to 250 in the original work with constraint satisfaction problems). Weights
are initialized to wi = 1 and are updated by adding a constant value if the
error for fitness case i is non-zero. An alternative weight updating scheme,
dubbed precision SAW, updates the weights in proportion to the fitness case
error value itself (Eggermont and van Hemert, 2000) as is done with HAH, al-
though the weight changes in SAW are cumulative while in HAH the weights
are recomputed at each evaluation.

Because there is a sense in which, given certain parameters and assump-
tions, HAH is similar to both implicit fitness sharing and SAW, it is reasonable
to suggest that SAW can be considered a form of fitness sharing and vice versa.
It seems at first glance counterintuitive that SAW, which uses only the best in-
dividual in a population, could be considered a special case of fitness sharing,
which depends on measures of phenotypic or genotypic similarity between
individuals. However, if one considers the notion that the genes of the best in-

Genetic Programming with Historically Assessed Hardness 9

dividuals in a population are more likely to be over-represented relative to less
successful individuals, then using only the performance of the best individual
in a population may be a reasonable (though greatly simplified) proxy measure
of the dominant phenotypes in the population.

Fitness Case Selection
Another broad area of research related to HAH concerns fitness case selec-

tion methods. These use various heuristics for choosing subsets of the fitness
cases for fitness testing. Many of these are intended to reduce the number of
fitness cases so that fitness evaluations can be run more quickly, and many use
subsets based on random selection. Dynamic Subset Selection (DSS) expands
on the notion of fitness case selection by incorporating fitness case difficulty
as a criterion for fitness case selection (Gathercole and Ross, 1994). More
recently, Topology Based Selection (TBS), a heuristic based on similarity be-
tween fitness cases (based on co-incidence of their solution) has proven to be
even more effective than DSS at improving the performance of GP on regres-
sion and classification problems (Lasarczyk et al., 2004).

HAH does not deal explicitly with the selection of fitness case subsets for
testing, but fitness case selection-like effects do sometimes emerge with HAH,
particularly when the population evolves to the point at which certain fitness
cases are fully solved. However, the most notable benefit of fitness case selec-
tion methods, namely a reduction in the number of fitness cases, is not present
in HAH. So while HAH, like some variations of fitness case selection, may
improve the performance of GP by changing the fitness landscape, HAH is not
useful in reducing computation time required for individual fitness evaluations.

4. Experiments
We examined the performance of Historically Assessed Hardness in the evo-

lution of a solution to the n-parity problem, in which a program must deter-
mine whether a variable-length list of inputs has an even or odd number of
“true” values. We chose this problem, which we have studied previously, as an
example of a moderately difficult classification problem.

We used the PushGP genetic programming environment (Spector, 2001;
Spector and Robinson, 2002; Spector et al., 2004; Spector et al., 2005) in-
tegrated with the breve simulation environment (Klein, 2002). Push is a multi-
type stack-based programming language developed for evolutionary computa-
tion and which allows the evolution of novel control structures through explicit
code and control manipulation. These control structures are of particular inter-
est for problems such as n-parity which require iterative or recursive solutions,
especially in the absence of explicit iterator functions, as in the current work.

10 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 1-1. Instruction set for tests of Historically Assessed Hardness on the n-parity problem.
Full documentation for these instructions is available in the Push language specification (Spector
et al., 2004).

Types Instructions
Integer instructions FROMBOOLEAN < > MAX MIN % / * - +

STACKDEPTH SHOVE YANKDUP YANK =
FLUSH ROT SWAP POP DUP RAND

Boolean instructions FROMINTEGER NOT OR AND STACKDEPTH
SHOVE YANKDUP YANK = FLUSH ROT SWAP
POP DUP

Code instructions FROMNAME FROMBOOLEAN FROMINTEGER
DO SIZE LENGTH EXTRACT INSERT NTHCDR
NTH APPEND LIST NOOP IF DO* CONS CDR
CAR NULL ATOM QUOTE STACKDEPTH SHOVE
YANKDUP YANK = FLUSH ROT SWAP POP DUP

Name instructions QUOTE STACKDEPTH SHOVE YANKDUP YANK
= FLUSH ROT SWAP POP DUP

Exec instructions Y S K IF STACKDEPTH FLUSH POP DUP

Table 1-2. Parameters used with PushGP for the n-parity problem runs.
Population size 5000
Evaluation limit 2000
Mutation 40% fair mutation

5% deletion mutation
Crossover 40%
Copy operator 15%
Tournament selection size 7
Generation limit 300
Fitness cases 64 randomly generated lists of between 8 and 12

Boolean values (the same randomly generated
fitness cases were used for all runs)

The instruction set used is found in Table 1-1. The instruction set includes
standard stack manipulation instructions for all types, integer math instruc-
tions, Boolean logic instructions and instructions for explicit manipulation of
code and program control (via the EXEC stack, which contains a list of all
instructions to be executed).

Notably absent from the instruction set we used are explicit iterator instruc-
tions that Push supports. These iterator functions (such as CODE.DOTIMES
and EXEC.DO*COUNT, among others) allow for the construction of explicit

Genetic Programming with Historically Assessed Hardness 11

Table 1-3. Results of various fitness scaling methods on the n-parity problem, using the pa-
rameters in Table 1-2 and the instructions in Table 1-1, sorted by success rate (“% Succ.”).
Abbreviations used in the method descriptions: Prev = Previous Generation, Cum = Cumula-
tive, Cross = Cross-Run, Curr = Current Generation, Diff = Difference, Quot = Quotient. Note
that “Curr/Quot” is equivalent to implicit fitness sharing for the n-parity problem (because it is
a Boolean problem; see text). Computational effort, described by Koza, represents the cumu-
lative effort required to solve a problem, taking into account both solution rate and generations
required to find a solution (Koza, 1992).

Method Succ. % Succ. Av. Succ. Comp. Mean Best
/Runs Gen. Effort Fitness

Prev/Diff 180/233 77.253 125.622 1,800,000 0.9674
Curr/Quot 169/234 72.222 111.520 1,752,000 0.9957
Prev/Quot 162/234 69.230 126.456 2,124,000 1.0206
Cum/Diff 157/232 67.672 129.713 2,208,000 1.0734
Cum/Quot 140/234 59.829 137.671 2,880,000 1.0721
Cross/Quot 57/234 24.358 157.140 9,288,000 1.5335
Cross/Diff 49/234 20.940 126.448 4,304,000 1.5678
Unscaled 48/234 20.512 120.395 8,282,000 1.6515

loops, and the absence of these instructions makes finding solutions consider-
ably more difficult. In place of iterator functions are special combinator func-
tions (Y, K and S) which manipulate the EXEC stack and which can be helpful
in the evolution of iterative or recursive behaviors that use novel, evolved con-
trol structures (Spector et al., 2005).

A complete list of the parameters used during the experiment is shown in
Table 1-2. We conducted 234 runs of each technique, with 4 runs lost to mis-
cellaneous software and system problems.

5. Results
The results of our runs are shown in Table 1-3. The HAH configuration

in which solution rates were obtained from the previous generation and errors
were scaled using the difference method produced the most solutions overall
and the lowest (best) mean best fitness. Several other configurations also per-
formed quite well; in fact all of the HAH configurations aside from the cross-
run configurations significantly out-performed the standard, unscaled method
of combining errors on individual fitness cases. The savings provided by each
of these methods, in terms of computational effort, was about 75%.

The configuration that is essentially equivalent to implicit fitness sharing
(“Curr/Quot”) was among the best; indeed it had the lowest average success
generation and the lowest computational effort. But the implementation of
this method (using the statistics of the current generation) is somewhat more

12 GENETIC PROGRAMMING THEORY AND PRACTICE III

complex than that of the others, so it is not necessarily the best choice. It is
also important to bear in mind that none of these methods is strictly equivalent
to implicit fitness sharing when applied to non-Boolean problems.

The performance of the cross-run HAH methods, while much worse than
that of the other HAH methods, is interesting in several respects. In terms
of computational effort one of these methods (“Cross/Diff”) performed much
better than the standard (“Unscaled”) method, but the other of these meth-
ods (“Cross/Quot”) did somewhat worse than standard. However, both of
these methods out-performed the standard method both in terms of overall suc-
cess rate and in terms of mean best fitness. The high computational effort of
“Cross/Quot” is attributable to the relatively large number of generations it re-
quired to achieve success. Hence there are several senses in which even these
methods, which used solution rates from independent runs as the basis for their
scaling of errors, out-perform the standard method. To the extent that this is
true one can infer that the improvements are due to aspects of case “hardness”
that transcend the circumstances of a particular genetic programming run.

6. Conclusions and Future Work
We have presented a family of easily implemented methods that are de-

signed to focus the effort of a genetic programming run on harder fitness cases,
where hardness is determined empirically from solution rates during a genetic
programming run. We have shown that these methods can produce signif-
icant improvements in problem-solving performance for a small investment
of programmer effort. One of our methods turns out to be nearly identical,
at the implementation level, with one type of fitness sharing that has been de-
scribed in the literature (implicit fitness sharing), but the rationale for our meth-
ods is completely different from that offered in discussions of fitness sharing.
Whereas fitness sharing is focused on the maintenance of diversity in a pop-
ulation, our Historically Assessed Hardness (HAH) methods are based on the
idea of rewarding good performance on difficult problems. This difference in
rationale leads to variations and extensions of our technique that are different
than those that arise naturally from fitness sharing approaches.

We believe that HAH can have significant utility in a wide range of appli-
cation areas. In fact, the exploration documented in this chapter was launched
because our use of a form of HAH helped us to achieve new results in an
application-oriented project (Spector et al., 2008).1 In that project, however,
we did not conduct sufficiently many or sufficiently systematic runs to say
anything definitive about the efficacy of the method. Here we have conducted

1The formulation used in the prior work was essentially the method that we have described here as “previous
generation, difference scaling,” although the scaled values ran from 1.0 to 2.0 rather than 0.01 to 1.01.

Genetic Programming with Historically Assessed Hardness 13

1, 872 runs on a well-studied problem and shown that the method does clearly
have utility.

One direction for further research concerns the application of HAH to non-
Boolean problems. As described above, in the context of such problems HAH
is less similar to fitness sharing and there are reasons to believe that it will
also be useful here. But we cannot say anything definitive about this without
large-scale, systematic testing.

Acknowledgments
This material is based upon work supported by the National Science Foun-

dation under Grant No. 0308540. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.
Special thanks to Wolfgang Banzhaf, Michael Korns, Loryfel Nunez, Katya
Vladislavleva, Guido Smits, Malcolm Heywood and Ian Lindsay.

References
Deb, Kalyanmoy and Goldberg, David E. (1989). An investigation of niche

and species formation in genetic function optimization. In Proceedings of
the third international conference on Genetic algorithms, pages 42–50, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Eggermont, J. and van Hemert, J. I. (2000). Stepwise adaptation of weights for
symbolic regression with genetic programming. In Proceedings of the Twel-
veth Belgium/Netherlands Conference on Artificial Intelligence (BNAIC’00).

Eiben, Gusz and van Hemert, Jano (1999). SAW-ing EAs: Adapting the fit-
ness function for solving constrained problems. In Corne, David, Dorigo,
Marco, and Glover, Fred, editors, New Ideas in Optimization, pages 389–
402. McGraw-Hill, London.

Gathercole, Chris and Ross, Peter (1994). Dynamic training subset selection
for supervised learning in genetic programming. In Davidor, Yuval, Schwe-
fel, Hans-Paul, and M-anner, Reinhard, editors, Parallel Problem Solving
from Nature III, volume 866, pages 312–321, Jerusalem. Springer-Verlag.

Iba, Hitoshi (1999). Bagging, boosting, and bloating in genetic programming.
In Banzhaf, Wolfgang, Daida, Jason, Eiben, Agoston E., Garzon, Max H.,
Honavar, Vasant, Jakiela, Mark, and Smith, Robert E., editors, Proceedings
of the Genetic and Evolutionary Computation Conference, volume 2, pages
1053–1060, Orlando, Florida, USA. Morgan Kaufmann.

Klein, J. (2002). breve: a 3d environment for the simulation of decentralized
systems and artificial life. In Standish, R., Bedau, M. A., and Abbass, H. A.,
editors, Proc. Eighth Intl. Conf. on Artificial Life, pages 329–334. Cam-
bridge, MA: MIT Press.

14 GENETIC PROGRAMMING THEORY AND PRACTICE III

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Lasarczyk, Christian W. G., Dittrich, Peter W. G., and Banzhaf, Wolfgang
W. G. (2004). Dynamic subset selection based on a fitness case topology.
Evol. Comput., 12(2):223–242.

McKay, R. I. (Bob) (2001). An investigation of fitness sharing in genetic pro-
gramming. The Australian Journal of Intelligent Information Processing
Systems, 7(1/2):43–51.

Sareni, Bruno and Kr-ahenb-uhl, Laurent (1998). Fitness sharing and niching
methods revisited. IEEE Trans. Evolutionary Computation, 2(3):97–106.

Smith, R., Forrest, S., and Perelson, A. (1993). Searching for diverse, cooper-
ative populations with genetic algorithms.

Spector, Lee (2001). Autoconstructive evolution: Push, pushGP, and pushpop.
In Spector, Lee, Goodman, Erik D., Wu, Annie, Langdon, W. B., Voigt,
Hans-Michael, Gen, Mitsuo, Sen, Sandip, Dorigo, Marco, Pezeshk, Shahram,
Garzon, Max H., and Burke, Edmund, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pages 137–146,
San Francisco, California, USA. Morgan Kaufmann.

Spector, Lee, Clark, David M., Lindsay, Ian, Barr, Bradford, and Klein, Jon
(2008). Genetic programming for finite algebras. In Proceedings of the 10th
annual conference on Genetic and evolutionary computation, London. ACM
Press. To appear.

Spector, Lee, Klein, Jon, and Keijzer, Maarten (2005). The push3 execution
stack and the evolution of control. In Beyer, Hans-Georg, O’Reilly, Una-
May, Arnold, Dirk V., Banzhaf, Wolfgang, Blum, Christian, Bonabeau, Eric W.,
Cantu-Paz, Erick, Dasgupta, Dipankar, Deb, Kalyanmoy, Foster, James A.,
de Jong, Edwin D., Lipson, Hod, Llora, Xavier, Mancoridis, Spiros, Pe-
likan, Martin, Raidl, Guenther R., Soule, Terence, Tyrrell, Andy M., Wat-
son, Jean-Paul, and Zitzler, Eckart, editors, GECCO 2005: Proceedings of
the 2005 conference on Genetic and evolutionary computation, volume 2,
pages 1689–1696, Washington DC, USA. ACM Press.

Spector, Lee, Perry, Chris, Klein, Jon, and Keijzer, Maarten (2004). Push 3.0
programming language description. Technical Report HC-CSTR-2004-02,
School of Cognitive Science, Hampshire College, USA.

Spector, Lee and Robinson, Alan (2002). Genetic programming and autocon-
structive evolution with the push programming language. Genetic Program-
ming and Evolvable Machines, 3(1):7–40.

