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Abstract

The growth of program size during evolu-
tion (code “bloat”) is a well-documented
and well-studied problem in genetic program-
ming. This paper examines the use of “size
fair” genetic operators to combat code bloat
in the PushGP genetic programming system.
Size fair operators are compared to naive op-
erators and to operators that use “node se-
lection” as described by Koza. The effects of
the operator choices are assessed in runs on
symbolic regression, parity and multiplexor
problems (2,700 runs in total). The results
show that the size fair operators control bloat
well while producing unusually parsimonious
solutions. The computational effort required
to find a solution using size fair operators is
about equal to, or slightly better than, the
effort required using the comparison opera-
tors.

1 INTRODUCTION

Code bloat in genetic programming has been docu-
mented since the field came into existence a decade
ago. In the past few years bloat has been studied
extensively, with researchers examining the causes of
bloat as well as testing new operators designed to
limit code bloat (D’haeseleer, 1994; Angeline, 1994;
Langdon and Poli, 1997; Poli and Langdon, 1997;
Banzhaf, et al., 1998; Soule and Foster, 1998; Lang-
don, et al., 1999; Francone, et al., 1999; Langdon,
1999; Luke, 2000). Recently, “size fair” operators
have been shown to limit bloat significantly without
decreasing the problem-solving ability of the genetic
programming system (Langdon, et al., 1999; Langdon,
1999).

This paper extends Langdon’s work by testing size fair
operators in a genetic programming system that uses
unusual representations for programs. The PushGP
system is conventional in most respects but it ma-
nipulates and produces Push programs rather than
the Lisp-like program trees used in more conventional
genetic programming systems (for example (Koza,
1992)). Push programs, like Lisp programs, are vari-
ably sized strings of symbols and balanced (possibly
nested) sets of parentheses. On the other hand, Push
programs are interpreted quite differently from Lisp
programs; Push program interpretation is more simi-
lar to the interpretation of stack-based languages like
Forth or Postscript. The applicability of Langdon’s
work to PushGP is therefore an interesting test of the
generality of his findings.

A detailed description of the Push programming lan-
guage is beyond the scope of this paper; see (Spector
and Robinson, 2002) for a full introduction and lan-
guage reference, or (Spector, 2001; Robinson, 2001)
for brief introductions. The essential feature of the
Push language for the present study is just that the
programs are syntactically similar to, yet semantically
quite different from, the Lisp-like programs used in tra-
ditional genetic programming systems. Push’s unique
structure supports many enhancements to genetic pro-
gramming systems (for example, efficient and fully au-
tomatic evolution of modular programs) but none of
these are relevant to the present study; see (Spector
and Robinson, 2002) for details.

In Langdon’s prior work he tested a 50%-150% fair
mutation operator in stochastic problem solving sys-
tems (e.g., hill climbing and simulated annealing sys-
tems) but not specifically in genetic programming sys-
tems. In this study we apply a variant of this op-
erator in PushGP and demonstrate its utility for ge-
netic programming. We also describe a new size fair
crossover operator and describe the performance of the
size fair operators in all possible combinations with



naive operators and operators that use node selection
(a technique based on Koza’s 90%-10% tree/leaf selec-
tion method (Koza, 1992)).

2 Bloat in PushGP

Nested parentheses in the Push syntax make it pos-
sible to model a Push program as a tree, and ther-
fore to apply standard, tree-based genetic operators in
PushGP. The original version of PushGP used what
we will call “naive” operators which were meant to
be as simple as possible while capturing the essential
ideas of traditional genetic programming operators.
The naive mutation operator selects a random “point”
of the program to replace, with each point having an
equal probability of being chosen. Each symbol and
each parenthesized expression in the program counts
as a point. The chosen point is then replaced with a
new randomly generated expression, which will have
a size uniformly selected from the range [1, n], where
n is a system parameter. The naive crossover oper-
ator selects random points in both parent programs
(again with all points having an equal probability of
being chosen) and returns a copy of one of the parents
with the chosen point from its mate replacing its own
chosen point.1

Bloat is quite strong in PushGP when the naive opera-
tors are used, in large part because the naive mutation
operator generates random subtrees that are larger,
on average, than the subtrees they replace. In order
to keep program lengths manageable, PushGP imple-
ments a size ceiling. Any program exceeding the size
ceiling is discarded, and a clone of one of its parents is
used in its place; in the tables below we refer to this
as a “size limit replication.” Most runs with the naive
crossover and mutation operators exhibit rapid code
bloat, with program sizes climbing steadily toward the
size ceiling. It has been shown that when put to work
on simple symbolic regression problems, 20%-45% of
the children were over the size limit at Generation 50,
and thus discarded in favor of a clone of the parent
(Robinson, 2001). (Robinson, 2001) also discovered
that the naive crossover and mutation operators were
more likely to select leaf nodes than internal nodes,
resulting in little variation in the internal structure of
programs across the population.

3 What Causes Bloat?

Code bloat is not a phenomenon particular to GP. It
has been shown to occur in several non-GP stochastic

1The random code generator is described in (Spector
and Robinson, 2002).

search techniques (Langdon, 1998). There are many
studies on the origins of bloat. Some findings suggest
that because there are more large programs than small
ones in a search space, fitness-based selection on av-
erage finds larger programs with better fitness than
smaller or equal-sized programs (Langdon and Poli,
1997). Others suggest that bloat occurs as an evolu-
tionary defense mechanism against destructive opera-
tors. Traditional crossover and mutation can often be
fatal when applied to a small, fit program as they ran-
domly rip out a chunk of the fit program and replace
it with a different random chunk of program. Thus,
programs evolve “introns” (segments of neutral code)
as a means to preserve fitness when subjected to de-
structive evolutionary operators (Nordin and Banzhaf,
1995). Similar to defense theory, (Soule and Foster,
1998) suggest that individuals are penalized when a
large chunk of code is removed, but not so when a
large chunk is inserted, thus driving up the size of the
program. This is called “removal bias”. More recently,
(Luke, 2000) suggested that introns are not the cause
of code growth, but rather a symptom, and that a bias
towards deeper crossover points drives code growth.

The underlying cause of bloat is still open to debate.
What is universally agreed upon, however, is that bloat
occurs and often has detrimental effects on the im-
provement in fitness in genetic programming runs. In
addition, it clearly slows down genetic programming
runs by consuming CPU cycles and large amounts of
memory.

4 New Operators

We studied four variations of the genetic operators
(two variations of mutation, two of crossover), in ad-
dition to the naive operators described above.

Node Selection, a method described in (Koza, 1992),
chooses an internal node 90% of the time and a leaf
node 10% of the time for either mutation or crossover.
Node selection was implemented both for mutation
and crossover in PushGP.

“Size Fair” crossover and mutation operators are op-
erators that on average produce children of the same
size as their parents. The size fair mutation operator
we use is identical to the 50%-150% operator described
in (Langdon, 1998; Langdon, et al. 1999), except that
it produces mutations of length `± `

4 instead of `± `
2 ,

where ` is the number of points in the subtree to be
mutated.2 The size distribution of the replacement

2The fraction `
4

was chosen arbitrarily, prior to reading
Langdon’s work. We assume the specific fraction has little
effect on performance.



subtrees (and thus the resulting children) is uniform.

Our new crossover operator, Fair Crossover, differs
from the size fair crossover operator described in
(Langdon, 1999). Langdon’s operator selects the first
crossover point at random from Parent 1. The size
(`) of the subtree at the first crossover point is cal-
culated, and the lengths of all subtrees in Parent 2
are also calculated. All subtrees from Parent 2 whose
size is larger than 1+2` are excluded. This limits the
amount by which the child can increase in size to 1+`
larger than its parent. For the remaining subtrees, the
number that are smaller, the same size and larger than
` are each counted, along with the mean size difference
for the larger and smaller subtrees. A roulette wheel
is used to select the size of the subtree to be crossed
over. The selection method is biased using calculated
mean size differences such that on average there is no
change in program size after crossover is performed.

With our new Fair Crossover operator, the first
crossover point is selected at random from Parent 1,
and the length of the subtree at that point is mea-
sured. Then a randomly selected subtree from Parent
2 is measured. If its length is within the range ` ± `

4
(where ` is the length of the subtree from the first
parent), the subtree from Parent 2 replaces the sub-
tree in Parent 1. If not, another subtree is randomly
selected from Parent 2, and the test is repeated. If
no subtrees are found within the range ` ± `

4 after n
attempts, the subtree whose size was closest to `± `

4 is
used in crossover. The size distribution of replacement
subtrees is dependent on the parents, and may not be
uniform.3

For the experiments described in this paper, Fair
Crossover would perform 20 retries before giving up
and using the subtree with the closest length. We will
call this a “punt”. In the 300 runs on symbolic regres-
sion of a sextic polynomial that used Fair Crossover,
the operator punted just over 80% of the time. This
means that if 2250 crossovers were performed, the
operator only found replacement subtrees within the
length `± `

4 about 450 times. However, since the sub-
tree whose size is closest to `± `

4 is used after 20 tries,
Fair Crossover still has an effect close to that of a size
fair operator. In the same 300 runs, replacement sub-
trees found by Fair Crossover were on average only 0.8
points larger than the original subtree. Given the low
bloat observed when Fair Crossover is used, it appears
that while Fair Crossover may not be perfectly size
fair, it is quite close.

3Fair Crossover was used instead of Langdon’s size fair
crossover operator because it was simpler to implement.

- push-base-type:
dup, pop, swap, rep, =, set, get, convert,
pull, pulldup, noop

- number: +, -, *, /, >, <
- integer: pull, pulldup, /

- boolean: not, and, or
- expression:

quote, car, cdr, cons, list, append, subst,
container, length, size, atom, null, nth,
nthcdr, member, position, contains, insert,
extract, instructions, replace-atoms,
discrepancy

- code: do, do*, if, map

Figure 1: Push function set used for the PushGP runs.

5 Results

All combinations of crossover and mutation operators
were used in sets of 100 independent genetic program-
ming runs on 3 different problems: Sextic Regression,
Even-5 Parity, and 6-Bit Multiplexor.

For all problems, the population size was 5000, the
program size ceiling 50 points, and the runs were lim-
ited to 50 generations. The size of mutant subtrees
added by the Naive Mutation operator was limited to
10 points. The operator rates were 45% crossover, 45%
mutation and 10% straight reproduction. The tourna-
ment size was 7. The function set is listed in Figure 1.
See (Spector and Robinson, 2002) additional informa-
tion on the Push functions.

Computational Effort was computed in the standard
way, as described by Koza on pages 99 through 103 of
(Koza, 1994). To summarize briefly, one conducts a
large number of runs with the same parameters (ex-
cept random seeds) and begins by calculating P (M, i),
the cumulative probability of success by generation i
using a population of size M. For each generation i
this is simply the total number of runs that succeeded
on or before the ith generation, divided by the total
number of runs conducted. From P (M, i) one can cal-
culate I(M, i, z), the number of individuals that must
be processed to produce a solution by generation i with
probability greater than z. Following the convention
in the literature we use a value of z=99%. I(M, i, z)
can be calculated using the following formula:

I(M, i, z) = M ∗ (i+ 1) ∗
⌈

log(1− z)
log(1− P (M, i))

⌉

The more steeply the graph of I(M, i, z) falls, and the
lower its minimum, the better the genetic program-
ming system is performing. Koza defines the mini-
mum of I(M, i, z) as the “computational effort” re-



Table 1: Results for symbolic regression of x6 − 2x4 + x2, sorted by computational effort.

Crossover Mutation Successful Average Average Average Computational
Method Method Runs Solution Size Limit Size Limit Effort

Size Replications Replications
(Gen. 25) (Gen. 49)

Fair Node Sel 93/100 31.29 363.00 715.71 450000
Fair Naive 85/100 32.66 965.76 1456.47 480000

Node Sel Fair 87/100 39.29 725.46 948.71 495000
Naive Node Sel 88/100 37.10 941.20 1216.17 540000
Fair Fair 88/100 21.77 10.19 64.85 540000

Naive Fair 87/100 33.63 362.70 587.21 585000
Naive Naive 71/100 38.17 1519.24 1920.52 800000

Node Sel Node Sel 76/100 40.58 1328.78 1576.00 820000
Node Sel Naive 61/100 42.36 2024.82 2280.97 960000

Table 2: Results for Even-5 Parity, sorted by computational effort.

Crossover Mutation Successful Average Average Average Computational
Method Method Runs Solution Size Limit Size Limit Effort

Size Replications Replications
(Gen. 25) (Gen. 49)

Fair Naive 100/100 34.85 318.50 * 240000
Naive Naive 98/100 36.62 1201.22 850.00 250000
Fair Node Sel 99/100 29.32 29.69 281.00 270000

Naive Node Sel 99/100 36.06 413.65 386.00 280000
Node Sel Naive 100/100 41.58 1659.48 * 290000

Naive Fair 96/100 29.56 214.06 258.60 310000
Node Sel Fair 96/100 31.75 342.15 793.50 320000

Fair Fair 97/100 20.99 8.23 0.00 330000
Node Sel Node Sel 98/100 37.89 657.51 1016.00 350000

* All runs completed before 49th Generation

Table 3: Results for 6-Bit Multiplexor, sorted by computational effort.

Crossover Mutation Successful Average Average Average Computational
Method Method Runs Solution Size Limit Size Limit Effort

Size Replications Replications
(Gen. 25) (Gen. 49)

Fair Fair 30/100 19.80 0.46 28.56 1870000
Fair Node Sel 36/100 27.58 71.41 428.67 1885000

Naive Fair 32/100 27.53 127.00 410.82 2080000
Naive Node Sel 26/100 30.96 389.41 749.47 2520000
Fair Naive 26/100 32.27 623.75 1388.20 2635000

Node Sel Naive 23/100 37.57 1375.40 1725.29 2835000
Node Sel Fair 26/100 27.96 325.13 673.92 3120000

Naive Naive 26/100 37.92 972.08 1519.34 3200000
Node Sel Node Sel 18/100 31.11 697.06 1014.76 4320000



quired to solve the problem. Computational effort is
not a perfect measure (see, for example, (Luke and
Panait, 2002)) but we believe it is sufficient for the
modest uses to which it is put here.

5.1 Symbolic Regression of x6 − 2x4 + x2

As shown in Table 1, the combination of Fair Crossover
and Node Selection Mutation yielded the most solu-
tions, least computational effort and the second-most
parsimonious solution sizes. The combination of Fair
Mutation and Fair Crossover yielded the second most
solutions (tied with Naive Crossover and Node Selec-
tion mutation) and the most parsimonious ones as well
(by nearly 10 points), but scored in the middle of the
field in terms of computational effort. Notable also
is that the operators causing the greatest amount of
bloat (and thus the greatest number of replications due
to hitting the size ceiling) finished in the last three
spots in terms of solutions found and computational
effort.

5.2 Even-5 Parity

Even-5 Parity is a fairly easy problem for PushGP
to solve, as shown by the high number of solutions
found. Interestingly, one of the least successful combi-
nations from the regression runs, Naive Crossover with
Naive Mutation, scored just behind Fair Crossover
with Naive Mutation in terms of computational effort.
Again, Fair Crossover with Fair Mutation found the
most parsimonious solutions by nearly 10 points, and
kept replications down to almost nothing, but scored
next to last in terms of computational effort.

5.3 6-Bit Multiplexor

When applied to the 6-bit Multiplexor problem dif-
ferent operators performed best. The pairing of size
fair mutation and crossover found the third most so-
lutions with the least computational effort. The size
fair operators also found the most parsimonious solu-
tions, beating the next best pair of operators by al-
most 8 points. The rest of the top performers all had
performed well in previous runs. Performing particu-
larly poorly was the pairing of Node Selection muta-
tion and crossover, which found the fewest solutions
and required the most computational effort.

6 Discussion

The efficacy of the size fair operators in controlling
bloat and in producing parsimonious solutions is clear
from the data. Certainly for the cases in which fair

mutation and fair crossover were used together the
improvements in these measures were dramatic. Ad-
ditionally, in many cases the use of just one size fair
operator, in conjunction with a non-size-fair operator,
seems to confer advantages.

It should come as no surprise that it is impossible to
declare one operator or combination of operators as
clearly being better than the rest with respect to the
computational effort required to find a solution. How-
ever, we do note that all of the runs with size fair
operators performed at least reasonably well; the use
of size fair operators does not appear to be detrimen-
tal with respect to this measure. We also note that
the better combinations often included one size fair
operator and one non-size-fair operator. One could
speculate that size fair operators, used by themselves,
slow the genetic programming system in its progress
to larger areas of the search space (where solutions are
more plentiful) thus increasing the time it takes to find
solutions. If so then one might further speculate that
the judicious mixing of non-size-fair operators, which
can have more dramatic impacts on program size, with
size fair operators would be the best way to encourage
robust problem solving performance. More research
would be required to confirm or falsify these specula-
tions.

7 Conclusions

The size fair operators examined in this work appear
to control bloat well and to encourage the production
of parsimonious solutions without negative impacts on
the computational effort required to find a solution.
This is important because unchecked bloat limits the
applicability of genetic programming by requiring ex-
orbitant computational resources, and because naive
approaches to bloat control can change the system’s
evolutionary dynamics in ways that make it harder to
find solutions. Solution parsimony is also important
because it simplifies the work of humans who must
interpret the output of genetic programming systems,
and because more parsimonious solutions may in some
cases also be more general.

This work was conducted using the PushGP system
which is similar to traditional genetic programming
systems in some ways but different from them in oth-
ers. The reported work extends Langdon’s earlier
work, demonstrating that the idea of size fair opera-
tors has utility across a broader range of program rep-
resentations. The obvious next step is to repeat this
study, using Langdon’s operators and the new size fair
crossover operator that we have developed, in a more
traditional genetic programming system. If they per-



form as well in such a follow-up study, controlling bloat
and producing parsimonious solutions without sacrific-
ing the problem-solving capacity of the system, then
we would recommend their wide-spread adoption.
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