© Copyright by Lee Arthur Spector 1992

DEDICATION

To Rebecca

ACKNOWLEDGMENTS

Jim Hendler directed and funded the project described herein. He also generously supported several detours in the research that have yet to be documented. The members of my preliminary exam and dissertation defense committees—David Stotts, Jim Reggia, Don Perlis, Dana Nau, John Horty, and Jordan Grafman—also helped to guide the research.

Invaluable feedback was provided by many other people, including Cynthia Woods, Anne Wilson, Clare Voss, Joe Sokal, Stephen Joseph Smith, Jim Sanborn, William C. Regli, Eduardo Ostertag, Madhura Nirkhe, Charles Chien-Hong Lin, Robert Kohout, Brian Kettler, Raghu Karinthi, SubbaRao Kambhampati, Subrata Ghosh, Terry Gaasterland, Antony Fine, Matthew Evett, Dan Eshner, Leonard Dickens, Yuan Cui, Scott Blanksteen, Benjy Bernhardt, Gregory Baratoff, and Bill Andersen.

This work was supported in part by the University of Maryland Systems Research Center (an NSF-supported engineering research center) and in part by grants from NSF (grant number IRI-8907890, J. Hendler, D. Nau, principal investigators) and from the Office of Naval Research (grant number N00014-88-K-0560, J. Hendler, principal investigator).

To my wife Rebecca, my parents, and my family I am grateful for support of uncountably many varieties.

3

TABLE OF CONTENTS

Section	Page
Chapter 1 Introduction	1
PART I PLANNING, REACTION, AND ABSTRACTION	
Chapter 2 Planning and Reaction 2.1 Static-World Planning 2.2 Generating Planned Activity 2.3 Problems of Integrated Behavior	6 7 13 19
Chapter 3 Abstraction in Planning 3.1 The Abstraction Kaleidoscope 3.2 Reduced Partition Abstraction 3.3 Partitioned Control Abstraction 3.4 Reduced Partitions and Partitioned Control	26 26 35 39 45
PART II SUPERVENIENT LEVELS	
Chapter 4 Supervenience	48
Chapter 5 Supervenience Formalized 5.1 The Role and Nature of the Formalism 5.2 Argument Systems 5.3 Layered Argument Systems and Supervenient Planning Hierarchies	59 59 64 68 72
Chapter 0 Supervenience and ABSTRIPS	12
PART III IMPLEMENTATION	
 Chapter 7 The Supervenience Architecture 7.1 Introduction 7.2 The Gulf Between Theory and Practice 7.3 General Architecture 7.4 Comparison to the Subsumption Architecture 	84 85 86 88 93
Chapter 8 The Abstraction-Partitioned Evaluator (APE) 8.1 Introduction 8.2 Specific Levels 8.2.1 Philosophical and Psychological Evidence 8.2.2 Summary of Levels in APE 8.2.2 Types of Knowledge at Each Level 8.3 Specialization of the Supervenience Architecture 8.4 Knowledge Representation	97 97 98 99 104 107 110 113

8.5 Operators	120
8.6 Translators	127
8.7 Strategies for Monitoring	132
8.8 Parallelism: Theoretical and Simulated	138
Chapter 9 HomeBot	142
9.1 Domain Description	142
9.2 Application of APE	147
9.3 Examples	149
9.3.1 Basic Examples	150
9.3.1.1 Basic Operators and Translators	151
9.3.1.2 HomeBot Feels Pain	154
9.3.1.3 HomeBot Navigates	164
9.3.1.4 HomeBot and the Ice Cube	170
9.3.2 Doorbells, Fire, and Overflowing Sinks	178
9.3.2.1 Doorbells	178
9.3.2.2 Fire	182
9.3.2.3 Overflowing Sinks	186
9.4 Performance	190

PART IV CONCLUSIONS

Chapter 10 Summary and Future Directions	196

Bibliography	208
--------------	-----

LIST OF FIGURES

Number	Page
1. Sussman's Anomaly.	20
2. A partially ordered set of planning levels.	89
3. A totally ordered supervenient planning hierarchy.	91
4. A single level of the supervenience architecture.	92
5. "Traditional" control system decomposition adapted from [Brooks 1990].	94
6. "Task achieving" decomposition adapted from [Brooks 1990].	95
7. The specific levels of APE.	105
8. A single level of APE in detail.	110
9. A detailed look at the bottom level of APE.	113
10. Query functions.	117
11. Command functions.	118
12. A simple APE operator for doing laundry.	121
13. A translator for laundry-piles.	128
14. Supply tuples for the laundry-pile translator example.	131
15. Monitoring with a demon.	133
16. Monitoring with a demon that checks other items on the blackboard.	134
17. A looping step monitor.	136
18. The Petri net fragment corresponding to the code in Figure 17.	137
19. HomeBot's domain.	144
20. A snapshot of the user interface to the HomeBot system.	145
21. Valid argument combinations for control.	149
22. Basic HomeBot operators used in examples.	152

23.	Basic HomeBot translators used in examples.	153
24.	The pain-reflex operator.	154
25.	The Petri net of the pain-reflex operator.	155
26.	The hand-pain-reflex operator.	156
27.	The Petri net of the hand-pain-reflex operator.	157
28.	The Petri net of the roll operator.	165
29.	The Petri net of the navigate operator.	166
30.	The motion-blockage translator.	167
31.	The roll-on-path operator.	167
32.	Operator activations during navigation.	169
33.	Short-circuited path planning resulting from the removal of an obstacle.	170
34.	Operator activations leading to initial steps.	172
35.	Operator activations while grabbing the dirty sock.	174
36.	Operator activations during the transition between tasks.	175
37.	Operator activations during resumption of the laundry task.	177
38.	The hear operator.	179
39.	The door-answering-reflex operator.	180
40.	The fight-fire operator.	183
41.	The infer-fire-from-smoke operator.	184
42.	The fire-detection translator.	184
43.	The smoke-detection translator.	184
44.	The room-visit-recency operator (abbreviated).	187
45.	The room translator.	188
46.	The temporal-room translator.	188
47.	The visit-rooms operator.	189
48.	The go-room translator.	189

49.	The temporal-go-room translator.	190
50.	Allocations of functions within APE's feap structures.	191
51.	HomeBot cycle speed vs. length of run.	193
52.	Run time of a key blackboard procedure across a single run of the system.	194
53.	Forms of abstraction.	200