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Abstract. In the last few years, there has been increasing interest from the agent community in the
use of techniques from decision theory and game theory. Our aims in this article are firstly to briefly
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1. Introduction

In the last few years, there has been increasing interest in the use of techniques from
decision theory and game theory for analyzing and implementing agent systems.
Our aims in this article are firstly to briefly summarize the key concepts of decision
theory and game theory, secondly to discuss how these tools are being applied in
agent systems research, and finally to introduce this special issue of Autonomous
Agents and Multi-Agent Systems by briefly discussing the papers that appear.
Broadly speaking, decision theory [20] is a means of analyzing which of a series

of options should be taken when it is uncertain exactly what the result of taking
the option will be. Decision theory concentrates on identifying the “best” decision
option, where the notion of “best” is allowed to have a number of different mean-
ings, of which the most common is that which maximises the expected utility of
the decision maker. Decision theory provides a powerful tool with which to analyze
scenarios in which an agent must make decisions in an unpredictable environment.
Game theory [1] is a close relative of decision theory, which studies interactions

between self-interested agents. In particular, it studies the problems of how inter-
action strategies can be designed that will maximise the welfare of an agent in a
multi-agent encounter, and how protocols or mechanisms can be designed that have
certain desirable properties. Notice that decision theory can be considered to be
the study of games against nature, where nature is an opponent that does not seek
to gain the best payout, but rather acts randomly. Given this brief description, it
comes as no surprise to learn that many of the applications of game theory in agent
systems have been to analyze multi-agent interactions, particularly those involving
negotiation and co-ordination.
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This increasing interest in game theory and decision theory in the agents commu-
nity led us to believe that the time was ripe to hold a workshop which focused on
these matters. This workshop was held in London on July 3, 1999, in conjunction
with the Fifth European Conference on Quantitative and Symbolic Approaches to
Reasoning and Uncertainty [9]. The special issue of Autonomous Agent and Multi-
Agent Systems you are now reading includes revised and polished versions of the
best papers that were presented at this workshop. Our aims in this article are to
provide very brief introductions to the areas of decision theory and game theory
in general, then to put the papers that appear in this special issue into some con-
text, and finally to point to further reading on this exciting and rapidly expanding
subject.

2. Decision theory in agent systems

Classical decision theory, so called to distinguish it from a number of non-classical
theories which have grown up in the last few years, is a set of mathematical tech-
niques for making decisions about what action to take when the outcomes of the
various actions are not known. Although the area grew up long before the concept
of an intelligent agent was conceived, such agents are canonical examples of the
decision makers which can usefully employ classical decision theory.
An agent operating in a complex environment is inherently uncertain about that

environment; it simply does not have enough information about the environment to
know either the precise current state of the environment, nor how that environment
will evolve. Thus, for every variable Xi which captures some aspect of the current
state of the environment, all the agent typically knows is that each possible value xij

of each Xi has some probability Pr�xij
� of being the current value of Xi. Writing x

for the set of all xij
, we have:

Pr � x ∈ x �→ �0	 1


and ∑

j

Pr�xij
� = 1

In other words, the probability Pr�xij
� is a number between 0 and 1 and the sum of

the probabilities of all the possible values of Xi is 1. If Xi is known to have value
xij

then Pr�xij
� = 1 and if it is known not to have value xij

then Pr�xij
� = 0.

Given two of these variables, X1 and X2, then the probabilities of the various
values of X1 and X2 may be related to one another. If they are not related, a case
we distinguish be referring to X1 and X2 as being independent, then for any two
values x1i and x2j , we have:

Pr�x1i ∧ x2j � = Pr�x1i �Pr�x2j �

If the variables are not independent, then:

Pr�x1i ∧ x2j � = Pr�x1i �x2j �Pr�x2j �
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where Pr�x1i �x2j � is the probability of X1 having value x1i given that X2 is known
to take value x2j . Such conditional probabilities capture the relationship between
X1 and X2, representing, for instance, the fact that x1i (the value “wet,” say, of the
variable “state of clothes”) becomes much more likely when x2j (the value “raining”
of the variable “weather condition”) is known to be true.
If we take the set of these Xi of which the agent is aware, the set X, then for

each pair of variables in X we can establish whether the pair are independent or
not. We can then build up a graph in which each node corresponds to a variable in
X and an arc joins two nodes if the variables represented by those nodes are not
independent of each other. The resulting graph is known as a Bayesian network1

[18], and the graphical structure provides a convenient computational framework in
which to calculate the probabilities of interest to the agent. In general, the agent will
have some set of variables whose values it can observe, and once these observations
have been taken, will want to calculate the probabilities of the various values of
some other set of variables.
Figure 1 is an example of a fragment of a Bayesian network for diagnosing faults

in cars. It represents the fact that the age of the battery (represented by the node
battery old) has a probabilistic influence on how good the battery is, and that this in
turn has an influence on whether the battery is operational (battery ok), the latter
being affected also by whether the alternator is working and, as a result, whether
the battery is recharged when the car moves. The operational state of the battery
affects whether the radio and lights will work. In this network it is expected that the
observations that can be carried out are those relating to the lights and the radio
(and possibly the age of the battery), and that the result of these observations can
be propagated through the network to establish the probability of the alternator
being okay and the battery being good. In this case these latter variables are the
ones which we are interested in since they relate to fixing the car.
Typically the variables an agent will be interested in are those that relate to its

goals. For instance, the agent may be interested in choosing an action that will
allow it to achieve a goal, and might therefore be interested in choosing that action
which has the greatest chance of succeeding in achieving that goal. When the agent

Figure 1. An example Bayesian network.
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has many goals it could achieve, this strategy could be extended to make the agent
choose to achieve the goal which has the greatest chance of being achieved, and to
do this by applying the action which gives this greatest chance.
However, building an agent which follows this strategy is somewhat shortsighted

since the agent will not consider the value of the goals, and will therefore choose
a goal which is easy to achieve, but worthless, over a goal which is hard to achieve
but very valuable. To take account of this problem, decision theory makes use of
the idea of utility. A utility is a value which is associated with a state of the world,
and which represents the value that the agent places on that state of the world.
Utilities provide a convenient means of encoding the preferences of an agent; as
von Neumann and Morgenstern [15] showed, it is possible to define utility functions
that faithfully encode preferences such that a state Si is preferred to Sj , if and only
if it has a higher utility for the agent.
Now, we can consider that our agent has a set of possible actions A, each member

Ai of which has a range of possible outcomes since the actions are not deterministic.
The value of taking a particular action will depend upon what the state of the world
is—it is of little value carrying a surfboard when taking a trip across the Sahara—and
so in choosing which action to undertake, our agent will need to look at the value
of U�Sj� where Sj is the state it is in after the action. Doing this for each possible
action, the agent can then choose the action which leads to the state it values most.
We can certainly build an agent which works in this way, and it would unerringly
chose to achieve the goal with the highest value as encoded by its utility function.
However it would be just as flawed as the agent which only tried to achieve the most
likely goal, trying to achieve the most valuable goal irrespective of the difficulty of
that goal.
To build more sensible agents we combine probability and utility calculations for

each action and calculate the expected utility of each. This amounts to calculating a
weighted average of the utility of each outcome, where the weight is the probability
of that outcome given the action being performed. Since each outcome is itself a
state, we have:

EU�Ai� =
∑

Sj∈S
Pr�Sj �Ai�U�Sj�

where S is the set of all states. The agent then selects action A∗ where:

A∗ = argmax
Ai∈A

∑

Sj∈S
Pr�Sj �Ai�U�Sj�

Now, these states which are being considered here are just particular instantiations
of the set of state variables X. Thus the probabilities in this calculation are just the
probabilities of the Xi having particular values given the actions.
Harking back to the discussion of Bayesian networks above, we can think of the

Xi as being structured as a graph, dropping the distinction between variables and
the nodes in the graph which represent them. The Ai can be brought into the graph
as well, as a different kind of node (square, perhaps, in contrast to the usual round
ones relating to the Xi) linked to the Xi whose values they influence. We can also
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Figure 2. An example influence diagram.

incorporate utilities. This time we only require a single node (a hexagon, to keep it
distinct from the others), and this is linked to those Xi which affect its value. Such
a graphical structure neatly captures all the dependencies in an expected utility
calculation, and is known as an influence diagram [8].
Figure 2 is an example of a small influence diagram capturing a decision problem

which a company has to make about its research and development budget. Since the
budget is the thing the decision is being made about, it is represented by a square
decision node. This is linked to the factors it directly effects, namely the technical
success of the company’s products and their overall profitability, that latter being
captured by the hexagonal value node. The remaining nodes are chance nodes and
represent the other factors which relate to the decision. These are just like nodes
in a Bayesian network. Given a particular instantiation of the decision node, the
relevant values can be propagated through the network, using an algorithm such
as Shacter’s graph reduction algorithm [27] to establish the expected utility of the
decision.
Given that the basic mechanisms of decision theory fit so neatly into the con-

text of intelligent agents, it is perhaps surprising that they have not been more
widely employed in the field. However, agent systems which use decision theory
seriously (that is adopting the notions of probability and utility) are rather scarce.
One sub-area of decision theory is, however, becoming popular and that is the field
of Markov decision processes (MDPs), discussed in detail in [2]. In essence an MDP
is an iterative set of classical decision problems. Consider a state of the world as a
node in a graph. Carrying out an action in that state will result in a transition to one
of a number of states, each connected to the first state by an arc, with some proba-
bility, and incur some cost. After a series of transitions a goal state may be reached,
and the sequence of actions executed to do this is known as a policy. Solving an
MDP amounts to finding a minimal cost policy for moving from some initial state
to a goal state.
MDPs capture many of the facets of real world problems, but unrealistically

assume that whatever system is solving the MDP knows at every point what state
it is in. This amounts to assuming that it is possible to measure some aspect of
the world and from this measurement tell precisely what state the world is in. This
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is rarely the case; it is far more likely is that from the measurement something
can be uncertainly inferred about the world. In such a situation, the states of an
MDP are replaced by beliefs about those states, and we have a partially observable
Markov decision process (POMDP). Because they can capture so many real situ-
ations, POMDPs are currently a hot topic in agent research, despite the fact that
they are intractable for all but the smallest problems.

3. Game theory in multi-agent systems

Game theory is a branch of economics that studies interactions between self-
interested agents. Like decision theory, with which it shares many concepts, game
theory has its roots in the work of von Neumann and Morgenstern [15]. As its
name suggests, the basic concepts of game theory arose from the study of games
such as chess and checkers. However, it rapidly became clear that the techniques
and results of game theory can equally be applied to all interactions that occur
between self-interested agents.
The classic game theoretic question asked of any particular multi-agent encounter

is: What is the best—most rational—thing an agent can do? In most multi-agent
encounters, the overall outcome will depend critically on the choices made by all
agents in the scenario. This implies that in order for an agent to make the choice
that optimises its outcome, it must reason strategically. That is, it must take into
account the decisions that other agent may make, and must assume that they will
act so as to optimise their own outcome. Game theory gives us a way of formalising
and analyzing such concerns.
In the early days of multi-agent systems research, it was widely assumed that

agents were benevolent: put simply, that agents could be assumed to share a common
goal, and would therefore be happy to “help out” whenever asked. The focus was
on distributed problem solving systems, in which groups of benevolent agents worked
together to solve problems of common interest [21, p. 3]. There seemed to be
an implicit assumption that this class of systems was the most common, and that
scenarios in which agents are in competition were unusual at best, aberrations at
worst. Over time, however, it has come to be recognised that in fact, benevolence is
the exception; self-interest is the norm. The recognition of this fact appears to have
been driven, at least in part, by the rapid growth of the Internet and the continuing
trend towards ever more distributed systems in computer science generally.
In tandem with this increasing recognition that self-interested agents are the

norm has been a steady growth of interest in the applications of game theory to
multi-agent systems. Game theory entered the multi-agent systems literature largely
through the work of Jeffrey Rosenschein and colleagues (see, e.g., [22, 23, 24]). In
his 1985 PhD thesis [21], Rosenschein used game theoretic techniques to analyze
a range of multi-agent interaction scenarios. For example, he showed how certain
types of cooperation and deal making could take place without communication: both
agents simply compute the best outcome and know that the party they are dealing
with will do the same. Since agents can use game theoretic techniques to predict
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what others will do, this obviates the need for explicit communication—coordination
arises because of the assumption of mutual rationality [23].
Perhaps the most compelling applications of game theory to multi-agent systems

have been in the area of negotiation [12, 24, 26]. Put simply, negotiation is the pro-
cess by which agents can reach agreement on matters of common interest. Nego-
tiation and bargaining were studied in the game theory literature well before the
emergence of multi-agent systems as a research discipline, and even before the
advent of the first digital computer. However, computer science brings two impor-
tant considerations to the game theoretic study of negotiation and bargaining:

1. Game theoretic studies of rational choice in multi-agent encounters typically
assumed that agents were allowed to select the best strategy from the space of
all possible strategies, by considering all possible interactions. It turns out that
the “search space” of strategies and interactions that needs to be considered
has exponential growth, which means that the problem of finding an optimal
strategy is in general computationally intractable. In computer science, the study
of such problems is the domain of computational complexity theory [17]. There
is a significant literature devoted to the development of efficient (polynomial
time) algorithms for apparently intractable problems, and the application of such
techniques to the study of multi-agent encounters is a fruitful ongoing area of
work.

2. The emergence of the Internet and World-Wide Web has provided an enormous
commercial imperative to the further development of computational negotiation
and bargaining techniques [16].

Given a particular negotiation scenario that will involve automated agents, game
theoretic techniques can be applied to two key problems:

1. The design of an appropriate protocol that will govern the interactions between
negotiation participants. The protocol defines the “rules of encounter” between
agents [24]. Formally, a protocol can be understood as a function that, on the
basis of prior negotiation history, defines what proposals are allowable by nego-
tiation participants. It is possible to design protocols so that any particular nego-
tiation history has certain desirable properties—this is mechanism design, and is
discussed in more detail below.

2. The design of a particular strategy that individual agents can use while
negotiating—an agent will aim to use a strategy that maximises its own individ-
ual welfare. A key difficulty here is that typically, the strategies that work best in
theory tend to be computationally intractable, and are hence unusable by agents
in practice.

As noted above, mechanism design involves the design of protocols for governing
multi-agent interactions, such that these protocols have certain desirable properties.
Possible properties include, for example [26, p. 204]:

— Guaranteed success. A protocol guarantees success if it ensures that, eventually,
agreement is certain to be reached.
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— Maximizing social welfare. Intuitively, a protocol maximizes social welfare if it
ensures that any outcome maximizes the sum of the utilities of negotiation par-
ticipants. If the utility of an outcome for an agent was simply defined in terms
of the amount of money that agent received in the outcome, then a protocol
that maximised social welfare would maximise the total amount of money “paid
out.”

— Pareto efficiency. A negotiation outcome is said to be Pareto efficient if there is
no other outcome that will make at least one agent better off without making
at least one other agent worse off. Intuitively, if a negotiation outcome is not
Pareto efficient, then there is another outcome that will make at least one agent
happier while keeping everyone else at least as happy.

— Individual rationality. A protocol is said to be individually rational if follow-
ing the protocol—“playing by the rules”—is in the best interests of negotiation
participants. Individually rational protocols are essential because without them,
there is no incentive for agents to engage in negotiations.

— Stability. A protocol is stable if it provides all agents with an incentive to behave
in a particular way. The best-known kind of stability is Nash equilibrium: two
strategies s and s′ are said to be in Nash equilibrium if under the assumption
that one agent is using s, the other can do no better than use s′, and vice versa.

— Simplicity. A “simple” protocol is one that makes the appropriate strategy for
a negotiation participant “obvious.” That is, a protocol is simple if using it, a
participant can easily (tractably) determine the optimal strategy.

— Distribution. A protocol should ideally be designed to ensure that there is no
“single point of failure” (such as a single arbitrator), and ideally, so as to min-
imise communication between agents.

The fact that even quite simple negotiation protocols can be proven to have such
desirable properties as these accounts in no small part for the success of game
theoretic techniques for negotiation [12].
Despite these very obvious advantages, there are a number of problems associated

with the use of game theory when applied to negotiation problems:

— Game theory assumes that it is possible to characterize an agent’s preferences
with respect to possible outcomes. Humans, however, find it extremely hard to
consistently define their preferences over outcomes—in general, human pref-
erences cannot be characterised even by a simple ordering over outcomes, let
alone by numeric utilities [25, pp. 475–480]. In scenarios where preferences are
obvious (such as the case of a person buying a particular CD and attempting to
minimise costs), game theoretic techniques may work well. With more complex
(multi-issue) preferences, it is much harder to use them.

— Most game theoretic negotiation techniques tend to assume the availability of
unlimited computational resources to find an optimal solution—they have the
characteristics of NP-hard problems. (A well known example is the problem of
winner determination in combinatorial auctions.) In such cases, approximations
of game theoretic solutions may be more appropriate.
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Despite these problems, game theory is extremely compelling as a tool for auto-
mated negotiation. In cases where it is possible to characterise the preferences and
possible strategies of negotiation participants, then game theory has much to offer.

4. The papers

As discussed by Guttman et al. [7] and Crabtree [5], one of the niches in which
autonomous agents are rapidly proving their worth is electronic commerce. Here
agents help to “grease the wheels” that must turn in order that goods and ser-
vices can be bought and sold across the Internet. One class of these wheel-greasing
agents are shopbots, agents which search the Internet on behalf of consumers, com-
paring prices across dozens of web sites. Shopbots thus help to cut consumers’ costs,
not just in the sense of allowing them to find the cheapest source of the good they
require, but also in the more general sense of reducing the cost of obtaining opti-
mal price and quality. Shopbots can also help to reduce the costs of suppliers,
by reducing the cost of evaluating, updating and advertising prices, and thus have
the potential to significantly affect the way markets operate. As a result, Kephart
and Greenwald [11] have investigated the impact of shopbots in single commodity
markets, modelling the behaviour of both buyers and sellers using game theoretic
techniques, and the paper in this issue presents a summary of their results.
Shopbots can be considered as operating on the side of buyers in an electronic

market helping them to find the best deals. The complementary kind of agent which
operates on the side of sellers are what have been called “pricebots,” autonomous
agents which fix the prices charged by a seller in order to secure the best price that
sellers are prepared to pay. Tesauro and Kephart [30] have investigated how such
price-setting agents can be made adaptive, in particular how they can make use of
Q-learning [32], an approach which factors in the long-term expected reward for
a given action taken in a given state. They consider a number of different model
economies, including one in which buyers are assumed to make use of shopbots, and
found that the Q-learning approach leads, broadly speaking, to increased profits for
sellers, in part because it reduces the effect of price wars (when sellers repeatedly
undercut each other in an attempt to capture a bigger share of the market).
In applications of game theory in multi-agent systems, agents are usually taken to

maximize their expected utility. This approach, however, is not always practical—
there are often bounds on computational resources which prevent the optimal
solution being computed. As a result, there has been much interest in computing
solutions under bounded rationality, that is approaches which aim to be rational
in the sense of computing the solution with maximum expected utility, but which
acknowledge bounds on their resources, and so relax one or more assumptions of
the optimal approach. Stirling, Goodrich and Packard [29], consider an adaptation
of Simon’s idea of satisficing—that is searching for an optimal solution until the
cost of continuing the search outweighs the improvement in solution that further
work will bring. They do this by introducing the notion of praxeic utility, a measure
which explicitly models the resources consumed, and allows these to be balanced
against the desire to obtain the best solution.
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The approach adopted by Stirling, Goodrich and Packard, while departing to
some degree from classical decision theory, still makes use of the same basic mech-
anisms. In particular, the approach takes praxeic utilities as primitive although, as
with utilities in classical decision theory, these will ultimately be grounded in some
kind of preference order. In contrast, Lang, van der Torre and Weydert [13] start
with an agent’s goals, and consider how an agent might reason about its goals and
use these to define its utility function. Their approach is logic-based, and thus an
extension of recent work on qualitative decision theory [6].
The two papers just described deal with combinations of beliefs and utilities. In

the case of Stirling, Goodrich and Packard, these beliefs are distributed over states
of affairs (roughly speaking conjunctions of propositions), while in the work of Lang,
van der Torre and Weydert, the beliefs are taken over individual propositions. Thus,
in neither case, is there much structure to the items that beliefs are distributed over.
Vane and Lehner [31], on the other hand, build belief distributions over much more
complex objects—in fact they deal with beliefs over games, in the sense of game
theory. In essence, their hypergame framework allows a agent in a game theoretic
setting to hedge its bets about what its opponent is doing. It does this by identifying
a set of possible games, representing the possible behaviours that its opponent might
engage in, building a probability distribution over these games, and evaluating the
best moves by the usual maximum expected utility algorithm. The result is an elegant
formalism which is a strict generalisation of both game theory and decision theory,
and which looks to be a useful tool for building future generations of mixed game
theoretic and decision theoretic agents.

5. Further reading

In this final section, we provide some pointers to further reading on the use of
decision theory and game theory in the multi-agent systems literature.
As befits a subject which has been established for some time, there are a num-

ber of good textbooks on decision theory. Of these, perhaps the best are those
by Lindley [14], Raiffa [20], and Smith [28]. The books by Lindley and Smith are
both intended for a statistics audience, while Raiffa’s intended audience is more
an economics or business one, but all are written carefully enough to make them
easy for computer scientists to understand. As mentioned above, the main area in
which ideas from decision theory have been carried into artificial intelligence is that
of Bayesian networks and influence diagrams. The standard reference on Bayesian
networks remains Pearl’s landmark volume [18], though Jensen’s more recent con-
tribution [10] provides a clearer introduction, and both Cowell et al. [4] and Castillo
et al. [3] cover more ground. Sadly none of these authors cover influence diagrams
in any detail, and the main reference for graphical decision models remains [8].
On the more specialised topic of Markov decision processes, there is at least one
good monograph [19], and a number of articles which give much of the necessary
detail. Of the latter, the paper by Boutilier, Dean and Hanks [2] is perhaps the
most useful.
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The game theory literature has grown steadily since the origins of the field—there
are now a clutch of journals on the subject, and many textbooks. Unfortunately, for a
non-economics audience, many of these textbooks are hard going. Among the more
helpful is Binmore’s Fun and Games [1] (which also includes a good summary of
further reading and an amusing critique of other textbooks in the field). With respect
to the multi-agent systems literature, most applications of game theory have been in
the area of negotiation, and the starting point should undoubtedly be Rosenschein
and Zlotkin’s [24]. Kraus provides a summary of work on negotiation as of 1997 [12],
and Sandholm’s authoritative [26] provides an excellent summary of game theory
for multi-agent interactions.

Note

1. The notion of independence captured in the arcs of a Bayesian network is somewhat more complex
than that described here, but the difference is not relevant for the purposes of this article. For full
details, see [18].
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