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Can Two Wrongs 
Make a Right? Coin- 
Tossing Games and 
Parrondo's Paradox 

number  of  natural  and man-made  activit ies can be cast in  the f o r m  of  vari- 

ous one-person games, and m a n y  of  these appear as sequences of  t ransi t ions  

,without  memory ,  or Markov chains. It has been observed, ini t ial ly  w i th  sur- 

prise, that losing games can often be combined by selection, or even randomly,  

to result in winning games. Here, we present the analysis 
of such questions in concise mathematical form (exempli- 
fied by one nearly trivial case and one which has received 
a fair amount of prior study), showing that two wrongs can 
indeed make a right--but also that two rights can make a 

wrong! 

Background 
On frequent occasions, a logical oddity comes along, which 
attracts a sizeable audience. One of the most recent is 
known as Parrondo's paradox [5, 6]. Briefly, it is the ob- 
servation that random selection (or merely alternation) of 
the playing of two asymptotically losing games* can result 
in a winning game. 

Conceptually similar situations involving only the pro- 
cessing of statistical data are not novel. What has been re- 
ferred to as Simpson's paradox [8] is typified by this sce- 
nario: Quite different items, say type 1 and type 2, cost 
dealers the same $10 per unit. Suppose that, dining a given 
period, dealer A sells 20 and 80 of these two types, charg- 
ing $13 and $15, respectively, per item. Dealer B, on the 
other hand, who charges $14 and $16 per item, sells 80 and 
20 of the two types. Then the average cost per item to dealer 
A's customers is (1/5)13 + (4/5)15 = $14.60, while B's on 
the average only pay (4/5)14 + (1/5)16 = $14.40, a net re- 
sult that B is delighted to advertise. This despite the fact 
that A sells both items more cheaply than B does! No sur- 
prise, since A sells mainly the more expensively marked 

*Such a game consists of repeated moves where the expected net gain per move is negative. 
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item and B the cheaper  one; this kind of cheating with sta- 
tistics must  be commonplace.  

In fact, it has been pointed out by Saari [7] that  aggre- 
gation often yields statistical results qualitatively different 
f rom those apparent at a lower level, and that this is re- 
lated to well-known problems in game theory and economic  
theory. 

Still, turning two losing games into a winning one (now 
we are playing solitaire) seems more than a bit counterin- 
tuitive. To demystify it a little, consider a really extreme 
case of  the Parrondo phenomenon  in which in game A, a 
player can only move from white to black, or  black to black. 
The outcome of a single move is a gain of  $3 if the player 
moves from white to black, and a loss of  $1 each time he 
moves from black to black. Because the player becomes  
t rapped on the losing color, his expected gain per  move is 
-$1 .  In game B, the role of  black and white are reversed, 
but  the expected gain per  move is the same -$1 .  Now a 
random selection of  game A or game B results in an ex- 
pected gain of  $1 per  move, no matter what  color  one is 
moving from (because half  the time, whether  A or  B is 
played, you are moving f rom a winning color  and half the 
time from a losing color). What is happening is that  each 
game is rescuing the other. 

Examples that are given need not  be so obvious (we will 
quote a prototype later), and it is worthwhile having a math- 
ematical structure to orga- 

nize their analysis. If the Turning two 
"game" concept  is re- 
stricted sufficiently to al- 
low a clear interpretation 
of  the averaging strategy 
mentioned above, this is 
readily accomplished. 

This corresponds  to the eigenvalue ~0 = 1 of  the matrix T, 
all o ther  eigenvalues being simple and having smaller ab- 
solute values. 

Now let us combine the matrix T and the set of gains 
{wij}  to  form the matrix T ( x ) ,  defined by 

Ti j (X)  = T i j  xWij,  (3.3) 

i.e., introduce a weight for the j--> i transition of  x raised 
to the w i j  power. The reason for doing so is that if 

we consider  any sequence of  transitions Jo, J l ,  �9 �9 �9 J N  

from an initial J0, then this sequence has a probability 

P r ( j o , . . . J N )  = T j N J N _ I . . .  Tj2Jl Tjl/0, and an associated gain 
WN(jO, . . . J g )  = WjNj~_ 1 + "" " + Wj ,  j o, SO that 

N 

P r ( j o ,  . . . j N ) X  W ~ ~  = 1-I T jn j , _ t (X ) .  (3.4) 
n = l  

By summing over all N-step sequences, we produce the 
powerful  moment-generating function of  WN, given by the 
expectation 

E ( x  Wg) = l t T ( x ) Y P o  . (3.5) 

The moment-generating function is a wonderful  tool for  
finding expectat ion values, and we'll use it right away. To 
do so, we first have to get a handle on T ( x )  N. Suppose that  
A(x) is the maximum eigenvalue of  T(x); if x is real and 

losing games 
into a winning one 

seems counterintuitive. 

The Expected Gain 
Let's get technical! By a (one-person) game, we will mean 
a set of  transitions from state j (among a finite set of  states 
S of  size s) to state i, with transition probability Tij; in ad- 
dition, to the move j -~ i in this Markov chain [9] we must  
associate a gain wi j ,  which can be positive or  negative. Of 
course, Tij ~-- O, a n d  Z i e s  Tij ---- 1 for any j E S, which can 
be written in vector-matrix form as 

l tT = 1 t, (3.1) 

where 1 is the column vector  of  all r s ,  and superscript  t 
indicates transpose. The properties of  such stochastic ma- 
trices are an old story, and in particular, we will confme 
our  attention to the large class of  irreducible stochastic ma- 
trices, where if one starts with a probability vector  P0j = 
Pr(s tar t  in state3) for the possible states, then iteration of  

the process  

P0, Tp0, T 2 p o , . . .  

results asymptotically in the unique mix of  state probabil- 
ities CO, j for state j,  regarded as components  of  the prob- 

ability vector  {CO,j} satisfying 

TCO = CO. (3.2) 

left eigenvector ~0(x) 

close to 1, A(x) will still be 
real, close to 1, and largest 
in absolute value. Further- 
more, if we normalize the 
maximal right eigenvector 

CO(x) of  T ( x )  by ltCo(x) = 
1, and the corresponding 

of T(x) by ~ ( x )  t CO(x)= 1, then 
T ( x ) N / A ( X )  N approaches the corresponding projection: 

lim T ( x ) N / A ( x )  g = C0(x) ~h~)(x). (3.6) 
N--->oc 

Hence (3.5) implies that 

lim E(xWN) / ; t (X)  N -= O~(X)pO. (3.7) g---*~ 

There is a lot of  information in (3.7), but  we will con- 
centrate on the asymptotic gain per  move, 

= l i m  E ( W N ) / N .  (3.8) 
N---)~ 

To find it, just  differentiate (3.7) with respect  to x and 
set x = 1, assuming commutativity of  the limiting opera- 

tions. Because ~(1) = 1, CO(l) = CO, 00(1) = 1, we have 
l i m N ~  ( E ( W N )  - N~'(1))  = 0~(1)p0, which is finite. Hence 
limg__+~ I ( E ( W N )  - NA'(1)) = 0, or according to (3.8) 

= A'(1). (3.9) 

An even more  transparent alternative representation is ob- 
tained by differentiating T ( x ) C O ( x ) =  X(x )CO(x)  with re- 
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spect  to x and set t ing x = 1: T'(1)Co + T05~(1) = K(1)CO + 
~b~(1). Taking the sca lar  p roduc t  with 1: 

l tT'(1)Co § ltqS~(1) = A'(1) + ltq~(1), 

so that  a ' (1)  = ltT'(1)~b0. Thus, 

= ltT'(1)CO, (3.10) 

whose interpretat ion is obvious: Co is the asymptotic  state vec- 

tor  whose components  are CO,k, k = 1 , . . .  s; T;j(1) = wij  Tij 
is the gain pe r  move  weighted  by its probabi l i ty ;  and 1 t adds  

it all up. Hence 
: IGURE " 

Wk = ~ WikTik (3.11) 
i 

is the expec ted  gain on making a move  f rom state k, and 
we can also wri te  (3.10) in the form 

= ~" WkCo,k. (3.12) 
k 

Game Averaging--a Simple Example 
A game,  in the  te rminology  we have been  using, is fully 
specif ied by  the weighted  t ransi t ion mat r ix  T(x) ,  which 

tells us at the  same  t ime the probabi l i ty  Tij of  a t ransi t ion 
j - +  i and the gain wi j  produced  by  tha t  move.  A random 
composi te  of  games  A and B can then be  c rea ted  by  choos-  
ing, pr ior  to each  move,  which game is to be  played; A (and 

its assoc ia ted  move  probabi l i ty  and gain pe r  move),  say, 
with probabi l i ty  a; or  B, with probabi l i ty  1 - a. 

TA,B(X) = aTA(X) + (1 -- a)TB(X).  (4.1) 

What has  come to be known as  Par rondo ' s  pa r adox  (orig- 
inally, a rough mode l  of  the "flashing ra tchet"  [1]), is that  

domain  in which  bo th  WA < 0 and WB < 0, bu t  W--A,B > O. 
Much of  the phenomeno logy  is a l ready p re sen t  in a variant  
of  the  s imple m o d e l  we have ment ioned  as  background.  Let 

us see how this goes:  
In both games, A and B, a move is made  from white or 

black to white or  black. Game A is now defined by a prob- 
ability p, no longer  unity, of moving to black,  q = 1 - p to 
white, with a gain of  $3 on a move f r o m  white, of  - $ 1  on a 

m o v e  f r o m  black. Hence (with white : j  = 1, b lack  : j  = 2) 

;), 
TA(X)=(p~ p/x] q/xl; (4.2) 

in game B, the roles  of  b lack  and white are  reversed,  so that  

( p / x  p x  3 
TB(X) = ~q/x q_J.xo] (4.3) 

For  the compos i t e  game, we imagine equal  probabil i t ies ,  
_ 1 a - ~, of  choos ing  one game or  the other,  and  indicate  this 

by �89 + • , and now 

1 

0 

- 1  

~ 

1 / 2 ~  ~ A +-~ B 

1 > P 

~A + ~ B  (~0 ,~A + ~ B  - -  , 

, ,  1) W~A + ~B 

It fol lows,  most  direct ly f rom (3.10), that  

W--A=W--B=3--4p,  W~A+~B--' ' = 1. (4.5) 

Hence, in the bold region of  Figure 1, for 3/4 < p -< 1, we in- 

deed  have WA = WB < 0, toge the r  wi*h~ =',~A+~B~ > 0. (Note 
--1 ~ for p < 1 howe ve r  that  WA = WB > W~A+~B ~.) 

Game Averaging--Another Example 
The game originally quoted in this  context  is as fo l lows [2]: 

Each  move  resul ts  in a gain of  § 1 or  - 1 in the p layer ' s  cap-  
ital. If  the current  capi tal  is not  a mult iple of  3, co in  I is 
tossed,  with a probabi l i ty  PI  of  winning +1, a p robab i l i ty  

ql = 1 - PI  of  "winning" - 1. If the capital  is a mul t ip le  of  
3, one  ins tead flips coin II wi th  cor responding  P2 and q2. 
Hence  the s ta tes  can be t aken  as  ( - 1 ,  0, 1) (mod  3), and  
the assoc ia ted  t ransi t ion and gain matr ices  are 

P l  0 - 1  1 

T =  Pl  0 , w =  1 0 - . (5.1) 
ql P2 - 1 1 

The asymptot ic  state, sat isfying TCO = Co, is readi ly  found: 

/ 
CO = ~ 1 - p , q ,  ) / / (2  + PiP2 + qlq2 - Plq l ) ,  (5.2) 

\ P 2  + q lq2 / /  

and  then  

- -  P~P2 - q2q2 . (5.3) 
w = ltT'(1)CO = 3 2 + PiP2 + qlq2 - P lq l  

Now suppose  there are  two  games, the second  spec i f ied  
by  pa r a me t e r s  Pl, ql, P~, q~. An averaging of  the two would  
then  define a move as: (1) choose  game No. 1 - -ca i l  it A - -  

wi th  probabi l i ty  a, game No. 2, B with probabi l i ty  1 - a; 
(2) p lay  the game chosen. Because  the gain mat r ix  w is the 
same  for both  games, this  is comple te ly  equivalent  to  play- 

ing a n e w g a n m  with pa r a m e t e r s  /~l = apl  + (1 - a)pl , '  P2 ^ = 
- )P2, etc., and  so (5.3) appl ies  as well. The ap2 + (1 a ' 

"paradox"  is most  c lear ly  d iscerned  by imagining bo th  

games  as fair, i.e., p~02 = q21q2, or equivalently 
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FIGURE 2. 

0 1/2 1 

Pl 

P2 = q2/(p2 + q2), (5.4) 

and similarly for Pl, P:2, creating the "operating curve" shown 
in Figure 2; winning games are above the curve; losing games, 
below. For games A and B as marked, all averaged games lie 
on the dotted line between A and B, and all are winning 
games. And by continuity with respect to all parameters, it is 
clear that if A and B were slightly losing, most  of  the con- 
necting dotted line would still be in the winning region. How- 
ever, two slightly winning games, close to D and E, would re- 
sult mainly in a losing game. So much for the paradox! 

The example most  frequently quoted is specialized in 
that  game B has only one coin, equivalent to two identical 
coins, Pl = P~ (= 1/2 for a fair game, point C); and is mod- 
ified in that A and B are systematically switched, rather 
than randomly switched. Qualitatively, this is much  the 
s a i n e .  

Asymptotic Variance 
Much of  the activity that we have been discussing arose 
f rom extensive computer  simulations [3, 4], carried out to 
the point of  negligible fluctuations in the gain. How far does 
one have to go to accomplish this? A standard criterion in- 
volves looking at the variance of  the gain per  move as a 
function of  the number  of  moves, N, that have been made: 

o'2(W; N) = E((WN/N)  2) - (E(WN/N))  2. (6.1) 

The computat ion of  ~ ( w ;  N) proceeds routinely from 
the same starting point (3.7) used previously to compute  

= limg__.o: E(WN/N). This time, differentiate (3.7) both 
once and twice with respect  to x and set x = 1, again as- 
suming commutativity of  limiting operations. Again using 
)~(1) = 1, 4)0(1) = 4)0, 00(1) = 1, this results in 

lim (E(WN) - N A'(1)) = ~ t ( 1 ) p  0 
N---) ~ 

lim [E(WN(WN - 1)) -- 2 N  E(WN)A' (1)  - N/V'(1) 
i - - )  cc 

+ N ( N -  1) X'(1) 2] = o'~t(1)po, 

(6.2) 

which we combine to read 

lim [E(W 2) - (E(WN))  2 - g A"(1) - N )t'(1) 2 - N ,V(1)] 
N--.oo 

= r - (~t(1)p0)2 + ~t(1)p0. (6.3) 

We see then that 

lim N cr2(w; N) -- A"(1) + A'(1) 2 + Z'(1). (6.4) 
N.__.oo 

In other  words, we have found that the standard devia- 
tion is given asymptotically in N by 

a(w; N ) ~  N-1/2[,~"(1) + A'(1) 2 + A'(1)] 1/2, (6.5) 

with a readily computable coefficient. For  example, in the 
"Parrondo" case of  (5.1), where 

0 q2/x p l x  

T(x)  = p l x  0 q l /x  ],  (6.6) 
\ q l / x  p2x  O /  
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we find that  A(x) sat isf ies 

A(X) 3 - -  (Plq2 4-  qlP2 4- plql)A(x) 
+ q21q2/x + p2tP2X = O. (6.7) 

By success ive  different ia t ion with r e spec t  to x, fol lowed by 

x = 1, it fol lows tha t  

~'(1) = (p~v2 - q2q2)/D 

F ( 1 )  = ( - 2 A ' ( 1 )  + 2p~p2 + 4q2q2)/D (6.8) 

1 (2 4- PiP2 4- qlq2 - Plql), where  D = -3 

and so we have 

N1/2o~W; N) ---> ~ Z  [q2(1 p2 p2) ] l/2. 4- (6.9) 
/ J  

Concluding Remarks 
We have shown here that  Parrondo's  "paradox" operates  in 
two regions. One can ~ at two losing games  by switching 

between them, but  one can also lose by  switching between 
two winning games. The precise fashion in which these oc- 

cur of course depends  upon details of  the games involved. 
Aside from details, the take-home message is that  the pro- 

cedure of  averaging strategies to improve the ou tcome- - in  

essence  a l l o ~ n g  each one to rescue the o the r - - i s  effective 
under  a large variety of  circumstances.  It is certainly taken  

advantage of by nature and man, although not necessar i ly  in 

the t ransparent  form of  the discussion of  equation (5.4). 
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Puzzle Solution for Cross-Number 
Puzzle (24, no. 2, p. 76) 

3 1 4 1 5 9 2 6 5 3  

1 0 4 0  m 3 3 3 3  m 

61 m 1 o 3 5 4 8 7  

2 o m m o  zm2 8 9 

2 m 747 m 1 6 1 2  

7 855 m 563 m 3 

7 o 8 1 z  z l l o  5 

6 8 2 0 0 2 9 I 2 1 

I 4 4 0 0 I 1 0 0 6 

2 7 1 8 2 8 1 8 2 8 
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