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number of natural and man-made activities can be cast in the form of vari-

ous one-person games, and many of these appear as sequences of transitions

without memory, or Markov chains. It has been observed, initially with sur-

prise, that losing games can often be combined by selection, or even randomly,

to result in winning games. Here, we present the analysis
of such questions in concise mathematical form (exempli-
fied by one nearly trivial case and one which has received
a fair amount of prior study), showing that two wrongs can
indeed make a right—but also that two rights can make a
wrong!

Background

On frequent occasions, a logical oddity comes along, which
attracts a sizeable audience. One of the most recent is
known as Parrondo’s paradox [5, 6]. Briefly, it is the ob-
servation that random selection (or merely alternation) of
the playing of two asymptotically losing games* can result
in a winning game.

Conceptually similar situations involving only the pro-
cessing of statistical data are not novel. What has been re-
ferred to as Simpson’s paradox [8] is typified by this sce-
nario: Quite different items, say type 1 and type 2, cost
dealers the same $10 per unit. Suppose that, during a given
period, dealer A sells 20 and 80 of these two types, charg-
ing $13 and $15, respectively, per item. Dealer B, on the
other hand, who charges $14 and $16 per item, sells 80 and
20 of the two types. Then the average cost per item to dealer
A’s customers is (1/5)13 + (4/5)15 = $14.60, while B’s on
the average only pay (4/5)14 + (1/5)16 = $14.40, a net re-
sult that B is delighted to advertise. This despite the fact
that A sells both items more cheaply than B does! No sur-
prise, since A sells mainly the more expensively marked

*Such a game consists of repeated moves where the expected net gain per move is negative.
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item and B the cheaper one; this kind of cheating with sta-
tistics must be commonplace.

In fact, it has been pointed out by Saari [7] that aggre-
gation often yields statistical results qualitatively different
from those apparent at a lower level, and that this is re-
lated to well-known problems in game theory and economic
theory.

Still, turning two losing games into a winning one (now
we are playing solitaire) seems more than a bit counterin-
tuitive. To demystify it a little, consider a really extreme
case of the Parrondo phenomenon in which in game 4, a
player can only move from white to black, or black to black.
The outcome of a single move is a gain of $3 if the player
moves from white to black, and a loss of $1 each time he
moves from black to black. Because the player becomes
trapped on the losing color, his expected gain per move is
—$1. In game B, the role of black and white are reversed,
but the expected gain per move is the same —$1. Now a
random selection of game A or game B results in an ex-
pected gain of $1 per move, no matter what color one is
moving from (because half the time, whether A or B is
played, you are moving from a winning color and half the
time from a losing color). What is happening is that each
game is rescuing the other.

Examples that are given need not be so obvious (we will
quote a prototype later), and it is worthwhile having a math-
ematical structure to orga-
nize their analysis. If the
“game” concept is re-
stricted sufficiently to al-
low a clear interpretation
of the averaging strategy
mentioned above, this is
readily accomplished.

The Expected Gain

Let’s get technical! By a (one-person) game, we will mean
a set of transitions from state 7 (among a finite set of states
S of size s) to state ¢, with transition probability T;; in ad-
dition, to the move j — 1 in this Markov chain [9] we must
associate a gain w;;, which can be positive or negative. Of
course, T;; = 0, and 2;cg Ty = 1 for any j € S, which can
be written in vector-matrix form as

1T =1, (3.1)

where 1 is the column vector of all 1's, and superscript ¢
indicates transpose. The properties of such stochastic ma-
trices are an old story, and in particular, we will confine
our attention to the large class of irreducible stochastic ma-
trices, where if one starts with a probability vector po; =
Pr(start in state j) for the possible states, then iteration of
the process

po, Tpo, T?py, . . .

results asymptotically in the unique mix of state probabil-
ities ¢y ; for state j, regarded as components of the prob-

ability vector {¢y ;] satisfying

Ty = ¢y 32)

Turning two losing games
into a winning one
seems counterintuitive.

This corresponds to the eigenvalue Ag = 1 of the matrix T,
all other eigenvalues being simple and having smaller ab-
solute values.
Now let us combine the matrix 7 and the set of gains
{wy;} to form the matrix 7(x), defined by
le(x) = Tij .’L'wi]', (33)
i.e., introduce a weight for the 5 — ¢ transition of x raised
to the wy power. The reason for doing so is that if
we consider any sequence of transitions jg, 71, . - . I~
from an initial jo, then this sequence has a probability
Pr(jo, .- -dn) = Ty jy_, - - - Ty 4, T, j,, and an associated gain
Wa(Jos - - - JN) = Wy jy_, T+ -+ wj j, so that

N
Pr(o, . - - g™ =11 T; ;. (@. (B4
n=1

By summing over all N-step sequences, we produce the
powerful moment-generating function of Wy, given by the
expectation

E@"v) = 1'T(x)N po. (3.5)

The moment-generating function is a wonderful tool for
finding expectation values, and we'll use it right away. To
do so, we first have to get a handle on T(x)". Suppose that
A(x) is the maximum eigenvalue of T(x); if x is real and
close to 1, A(x) will still be
real, close to 1, and largest
in absolute value. Further-
more, if we normalize the
maximal right eigenvector
$o(x) of T(x) by 1'¢o(x) =
1, and the corresponding
left eigenvector yp(x) of T(x) by ) ¢do(@) =1, then
T(@)YN/A(x)N approaches the corresponding projection:

Aim T@NA@N = o(@) Po(@). (3.6)
Hence (3.5) implies that
Jim E@*v)/A@)N = Wo(@)po- 37

There is a lot of information in (3.7), but we will con-
centrate on the asymptotic gain per move,

w = Nli_{g E(Wy)/N. (3.8)
To find it, just differentiate (3.7) with respect to x and
set x = 1, assuming commutativity of the limiting opera-
tions. Because A(1) =1, ¢o(1) = ¢y, (1) =1, we have
Emy_,e (E(Wx) — NA'(1)) = ¢f(1)po, which is finite. Hence
limy o0 %(E(WN) — NA'(1)) = 0, or according to (3.8)

w=A(. 3.9
An even more transparent alternative representation is ob-
tained by differentiating T(x)do(x) = A(x)do(x) with re-
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spect to x and setting x = 1: T"(1) ¢y + Tpp(1) = A'(1) gy +
&4(1). Taking the scalar product with 1:

T’ (Do + 1'dp(L) = A'(1) + 1*g(L),
so that A’'(1) = 1'T"(1)¢y. Thus,

W = 1°T" (1) o, (3.10)

whose interpretation is obvious: ¢y is the asymptotic state vec-
tor whose components are ¢ox, k=1, ..., TjH1) =wy Ty
is the gain per move weighted by its probability; and 1! adds
it all up. Hence

wi = > wiTu 8.1

B

is the expected gain on making a move from state k, and
we can also write (3.10) in the form

W= widos (3.12)
k

Game Averaging—a Simple Exampie

A game, in the terminology we have been using, is fully
specified by the weighted transition matrix T(x), which
tells us at the same time the probability T;; of a transition
Jj— 1 and the gain w;; produced by that move. A random
composite of games A and B can then be created by choos-
ing, prior to each move, which game is to be played; A (and
its associated move probability and gain per move), say,
with probability a; or B, with probability 1 — a.

Tap(x) = aTx(@) + (1 ~ a)Tp(x).

What has come to be known as Parrondo’s paradox (orig-
inally, a rough model of the “flashing ratchet” [1]), is that
domain in which both w4 <0 and wp <0, but wy > 0.
Much of the phenomenology is already present in a variant
of the simple model we have mentioned as background. Let
us see how this goes:

In both games, A and B, a move is made from white or
black to white or black. Game A is now defined by a prob-
ability p, no longer unity, of moving fo black, g =1—p to
white, with a gain of $3 on a move from white, of ~$1 on a
move from black. Hence (with white: j = 1, black:j = 2)

_ (4 q _ (4
TA"<p ), doa (p)’

_ (e g\
Ta@) ( o p/x),

@.1)

4.2)

in game B, the roles of black and white are reversed, so that

=y ) e (h)

Ta() = (p/x px3)_

W qr 4.3)

For the composite game, we imagine equal probabilities,

a = 1 of choosing one game or the other, and indicate this
by %A + %B, and now
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It follows, most directly from (3.10), that
Wy =wp =3 — 4p, Wix+ip= 1 4.5)

Hence, in the bold region of Figure 1, for 3/4 <p < 1, we in-
deed have w4 = wg < 0, together with wl,.+lp > 0. (Note
however that W = Wg > Wia+ip forp < é.)

Game Averaging—Another Example

The game originally quoted in this context is as follows [2]:
Each move results in a gain of +1 or —1 in the player’s cap-
ital. If the current capital is not a multiple of 3, coin I is
tossed, with a probability p; of winning +1, a probability
q1 = 1 — py of “winning” — 1. If the capital is a multiple of
3, one instead flips coin II with corresponding p; and go.
Hence the states can be taken as (—1, 0, 1) (mod 3), and
the associated transition and gain matrices are

0 g2 m 0 -1 1
T=|p 0 o], w=| 1 0 -1|] (51
g p2 0 -1 1 0

The asymptotic state, satisfying T'¢y = ¢y, is readily found:

g2 t p1p2
do=| 1—-pa1 | /@ +pw2+ @142 — 1191), (56.2)
P2 + q192
and then
2 9
W= 1T (1) = 3—— P12 — 1> (5.3)

2+ pws + g2 — P1q1

Now suppose there are two games, the second specified
by parameters pi, qi, p3, 95. An averaging of the two would
then define a move as: (1) choose game No. 1—call it A—
with probability a, game No. 2, B with probability 1 — a;
(2) play the game chosen. Because the gain matrix w is the
same for both games, this is completely equivalent to play-
ing anew game with parameters f;, = ap; + (1 — a) p1, P2 =
aps + (1 — a)ps, etc.,, and so (5.3) applies as well. The
“paradox” is most clearly discerned by imagining both
games as fair, i.e., p?pg = q%qg, or equivalently



172

FIGURE 2.

P2 = qi/(PF + 4D, (5.4)

and similarly for pi, ps, creating the “operating curve” shown
in Figure 2; winning games are above the curve; losing games,
below. For games A and B as marked, all averaged games lie
on the dotted line between A and B, and all are winning
games. And by continuity with respect to all parameters, it is
clear that if A and B were slightly losing, most of the con-
necting dotted line would still be in the winning region. How-
ever, two slightly winning games, close to D and F, would re-
sult mainly in a losing game. So much for the paradox!

The example most frequently quoted is specialized in
that game B has only one coin, equivalent to two identical
coins, p; = ps (= 1/2 for a fair game, point C); and is mod-
ified in that A and B are systematically switched, rather
than randomly switched. Qualitatively, this is much the
same.

Asymptotic Variance

Much of the activity that we have been discussing arose
from extensive computer simulations [3, 4], carried out to
the point of negligible fluctuations in the gain. How far does
one have to go to accomplish this? A standard criterion in-
volves looking at the variance of the gain per move as a
function of the number of moves, N, that have been made:

o%(w; N) = E(Wn/N)?*) — (B(Wn/N))>. 6.1

The computation of o?(w; N) proceeds routinely from
the same starting point (3.7) used previously to compute
w = limpy_,.. E(Wa/N). This time, differentiate (3.7) both
once and twice with respect to x and set x = 1, again as-
suming commutativity of limiting operations. Again using
A(D) =1, ¢o(1) = ¢y, Yp(1) = 1, this results in

Jim (B(Wy) — N A1) = ¢6'(Dpo
AJim [E(Wn(Wy — D)) = 2N E(Wy)A'(1) — NA'(D) - (6.2)
+NV = 1) (D) = ' (Dpo,

which we combine to read

Jim [ECWR) — (E(Wa)? — NA"(D) = NX(1)? - NA'(D)]
= ¢6'(Dpo — (W' (Dpo)® + ¢6'(Lpo-  (6.3)

We see then that

Jim N o®(w; N) = M) + VAP + XA, (64)

In other words, we have found that the standard devia-
tion is given asymptotically in N by
o(w; N) = N"2[)"(D) + A'(1D? + A'(D]2, (6.6)

with a readily computable coefficient. For example, in the
“Parrondo” case of (5.1), where

0 g/ px
T)=|px 0 gq/x] (6.6)
a/x px 0
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we find that A(x) satisfies

A@)2 — (p1g2 + Q2 + P1DAX)
+ q%qg/x + p%pgx =0. (6.7

By successive differentiation with respect to x, followed by
x = 1, it follows that

N(1) = (pips — qig2)/D
N'(1) = (—21'(1) + 2p%ps + 4dig2)/D
where D = é 2 + pip2 + q192 — P19,

(6.8)

and so we have

2
NZo(w; N) = < lg2(1 + pipa)2 (89)

Concluding Remarks

We have shown here that Parrondo’s “paradox” operates in
two regions. One can win at two losing games by switching
between them, but one can also lose by switching between
two winning games. The precise fashion in which these oc-
cur of course depends upon details of the games involved.
Aside from details, the take-home message is that the pro-
cedure of averaging strategies to improve the outcome—in

“

essence allowing each one to rescue the other—is effective
under a large variety of circumstances. It is certainly taken
advantage of by nature and man, although not necessarily in
the transparent form of the discussion of equation (5.4).
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Puzzle Solution for Cross-Number
Puzzle (24, no. 2, p. 76)
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