Expressive Languages for
Evolved Programs and
Autoconstructive Evolution

Lee Spector
Cognitive Science
Hampshire College

(& Computer Science, U. Mass Amherst)
http://hampshire.edu/lspector

http://hampshire.edu/lspector
http://hampshire.edu/lspector

Outline

® Evolutionary computation comes of age
® Representations

® Genetic programming

® Expressive languages

® Push

® Autoconstructive Evolution

Evolutionary Computation

Random Generation

v

Assessment —~ Solution

/N

Selection i~ Variation

100100010101 001101001110

i

111110010001 010101010011

110000011111 000111010100

101111010110

L

110010110101
000111100011 010110001000

| ™~~~

111100100011 011000100110

—

100001101011 000001000011

e

010000100110 100101101010

100001010010 010111101111

100100101000

101101000101

110101011001

111101001011

111001001110

111001001110

101110101100

010111000100

101101110100

100111001011

v

100100011101

| |

111010001001 110100100110

/¢\

101101111010 000011100111

101010111111 011011011100

| ™~

001001101100 100100100000

100001110100 010011010101

| ™~

011101100101 000010011111

—

010111011001 011001010110

110111110111

110101010010

!

-

Traditional Genetic
Algorithms

® |nteresting dynamics

® Rarely solve interesting hard problems

GECCO Humies b | /!) gy Llpson

e |4
E
~ - -
. (b)

r

//\\@

2 T _mfghl_H_ _\

high
1 JaHm, HoH v, Hew e, HHH AN

2 Ju.238) -% 2
1 1 {HH us.e20 }

M, M,

Spector

Islands and Migration

!

-

_

Random Generation

Assessment — > Solution

7N\

Selection — . Variation

!

-

!

-

_

Random Generation

Assessment — > Solution

7N\

Selection — . Variation

_

Random Generation

Assessment —~ Solution

7N\

Selection — —~ Variation

!

-

!

-

!

_

Random Generation

Assessment —~ Solution

7N\

Selection — —~ Variation

_

Random Generation

Assessment — > Solution

7N\

Selection — . Variation

!

-

!

_

Random Generation

Assessment — > Solution

7N\

Selection — . Variation

!

Genetic Programming

® Evolutionary computing to produce
executable computer programs.

® Programs are tested by executing them.

Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Artificial assembly-like languages (Ray,Adami, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)
Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Mutating Lisp

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (- (+ 2 2) 2)
(+ 4 (- 2 23)))

Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- Z2 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (* 2 2) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 Z) 1)
(+ 4 (- Z2 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X Y)
(+ 14 (/ Y X))))

Symbolic Regression

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.

Fitness = error (smaller is better)

GP Parameters

Maximum number of Generations: 5|1

Size of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: |7
Fitness-proportionate reproduction fraction: 0. |
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE

Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: |.2

3

Evolving y=x

-0.2

0.75

Best Program, Gen O

1
—o— Target

0.754 - <o (Generation 0

(* X X)) 05 -
(- (% 0.1 0.1)
(* X X))) 025
0.1)

Best Program, Gen 5

—o— Target

........ o Generation 5

(- (* (* (% X 0.1)
(* 0.1 X))
(_ X 0.25 -
(% 0.1 X)))
0.1)

Best Program, Gen |2

(+ (- (- 0.1
(- 0.1 —o— Target
(- (* X X)
(+ 0.1 e o (Generation 12
(- 0.1 :
(* 0.1
0.1))))))
(* X
(* (% 0.1
(% (* (* (- 0.1 0.1)
(+ X
(- 0.1 0.1)))
X)
(+ X (+ (- X 0.1)
(* X X)))))
(+ 0.1 (+ 0.1 X)))))
(* X X))

Best Program, Gen 22

(- (- (* X (* X X))
0.1)
0.1)

Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College

Hampshire College SUNY New Paltz ~ Ambherst, MA 01002
Amherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Amherst, MA 01002 Amherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

Humies 2008
GOLD MEDAL

Everybody’s Favorite
Finite Algebra
Boolean algebra, B := ({0,1}, A,V,—)

0 1 V
0 0
1 1

A\
0
1

0
0

Primal: every possible operation can be expressed by a
term using only (and not even) A, v,and -.

Bigger Finite Algebras

® Have applications in many areas of science,
engineering, mathematics

® Can be much harder to analyze/understand

® Number of terms grows astronomically with
size of underlying set

Goal

Find terms that have certain special properties

Discriminator terms, determine primality

tA(:c,y, z) =

{:cif:z;;éy

zifx =y

Mal'cev, majority, and Pixley terms

For decades there was no way to produce these
terms in general, short of exhaustive search

Current best methods produce enormous terms

d
O
LS,
o
X
LL]
V)
S
e
Q
20
<

Results

® Discriminators for A, Az, Az, A4, As
® Mal’cev and majority terms for B

® Example Mal’cev term for B;:

(™)) x)*2)*(2%%)) * (x5 (2¥(x%(2%y))))*2)) *2)
) (((272) ") (2%%))*x)*y) ¥ (((y=(2¥(2%y)))*
(((Y*y)*x)*2))*(x*(((z*2)*x)*(z*(x*(z*y)))))))))

Significance, Time

Uninformed Search
Expected Time (Trials)

3 element algebras
Mal’cev 5 seconds (31° ~ 107)
Pixley /majority 1 hour (3% ~ 1019)
discriminator 1 month (347 ~ 1013)

4 element algebras
Mal’cev 103 years (4%% ~ 1017)
Pixley /majority 1010 years (440 ~ 1024)
discriminator 1024 years (454 ~ 103%)

Significance, Time

Uninformed Search
Expected Time (Trials)

GP

Time

3 element algebras
Mal’cev
Pixley /majority
discriminator

5 seconds (31° ~ 107)
1 hour (3% ~ 1019)
1 month (347 ~ 1013)

1 minute
3 minutes
5 minutes

4 element algebras
Mal’cev
Pixley /majority
discriminator

103 years (4%% ~ 1017)
1010 years (440 ~ 1024)
1024 years (464 ~ 1038)

30 minutes

2 hours
?

Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))

Significance, Size

Term Type

Primality Theorem

Mal’cev
Majority
Pixley
Discriminator

10, 060, 219
6, 847, 499
1,257, 556, 499
12,575, 109

(for A))

Human Competitive!

® Rather: human-WHOMPING!

® QOutperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field

Expressive Languages

Strongly typed genetic programming
Automatically defined functions
Automatically defined macros
Architecture-altering operations

Developmental genetic programming

Expressive Languages

Strongly typed genetic programming
Automatically defined functions
Automatically defined macros
Architecture-altering operations
Developmental genetic programming

Push provides all of the above and more, all
without any mechanisms beyond the stack-
based execution architecture

Types

Most useful programs manipulate multiple
data types.

Single type or multiple type closures.

Strongly typed genetic programming:
constraints on code generation and genetic
operators (Montana).

Polymorphism (Yu and Clack).
Stack-based GP with typed stacks (Spector).

Modules

Automatically-defined functions (Koza).

Automatically-defined macros (Spector).

Architecture-altering operations (Koza).

Module acquisition/encapsulation systems
(Kinnear, Roberts, many others).

Push approach: instructions that can build/
execute modules with no changes to the
system'’s representations or algorithms.

Push

® A programming language designed for programs
that evolve.

® Simplifies evolution of programs that may use:
* multiple data types
* subroutines (any architecture)
recursion and iteration
evolved control structures
evolved evolutionary mechanisms

Push

Stack-based postfix language with one stack per type

Types include: integer, float, Boolean, name, code,

exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument? NOOP

Trivial syntax:
program — instruction | literal | (program™)

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma’th _|_7) /7 x, >7 <7
(INTEGER and FLOAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

Push(3) Semantics

e '[o execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E':

(a) If F is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 3 INTEGER * 4.1 5.2 (23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE FLOAT.+ TRUE FALSE
BOOLEAN.OR) BOOLEAN.OR)

exec code bool int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

5.2
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1

float

FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

52

4.1

float

TRUE

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 9.3
BOOLEAN.OR)

exec code bool int float

(23 INTEGER * 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

Same Results

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+)

(3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF)

IN=4.0

(3.14 CODE.REVERSE (3.14 CODE.REVERSE
CODE.CDR ININ CODE.CDR IN IN
5.0 FLOAT.> 5.0 FLOAT.>

exec code bool int

3.14
SRS
CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

CODE.REVERSE

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

exec

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

code

bool

int

3.14

float

CODE.CDR
IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

(CODE.IF (CODE.QUOTE

CODE.IF FLOAT*) FLOAT> 5.0 IN 314

IN CODE.CDR

exec code bool int float

IN
IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float

IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT*) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN 3.14

CODE.CDR

exec code bool int float

5.0

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code bool

FLOAT.>

(CODE.QUOTE FLOAT)

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

(CODE.QUOTE FLOAT.¥) 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float

CODE.QUQOTE

FLOAT.*

((CODE.QUOTE FLOAT)

CODE.IF FLOAT> 5.0 IN IN

CODE.CDR

exec code

FALSE

bool

int

4.0
3.14

float

FLOAT.* 4.0

((CODE.QUOTE FLOAT)

CODE.IF FLOAT.> 5.0 IN IN FALSE 3.14

CODE.CDR

exec code bool int float

4.0
FLOAT.* 3.14

exec code bool int float

12.56

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.¥*)
10.0 FLOAT./)

IN=4.0

(IN EXEC.DUP (3.13 (IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) FLOAT*) 10.0 FLOAT/)

exec code bool int

IN

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

(3.13 FLOAT.*)

(3.13 FLOAT)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

3.13

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

FLOAT.*

(3.13 FLOAT*)

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

4.0

float

(3.13 FLOAT*)

10.0

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float

3.13
FLOAT.*

10.0
FLOAT./

exec

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/)

code

bool

int

12.52

float

FLOAT.*

10.0 3.13

(IN EXEC.DUP (3.13
FLOAT./ FLOAT*) 10.0 FLOAT./) 12.52

exec code bool int float

10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float

10.0

FLOAT/ | 52550 R5%, 39.1876

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT*) 10.0 FLOAT/) 3.91876

exec code bool int float

Combinators

® Standard K S, and Y combinators:

® EXEC.K removes the second item from the EXEC stack.

® EXEC.S pops three items (call them A, B,and C) and
then pushes (B C), C,and then A.

® EXEC.Y inserts (EXEC.Y T) under the top item (T).

® A Y-based “while” loop:
(EXEC.Y
(<BODY/CONDITION> EXEC.IF
() EXEC.POP))

Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE . DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

Named Subroutines

(TIMESZ2 EXEC.DEFINE (2 INTEGER.*))

Modularity
Ackley and Van Belle

200 IADFIF
Monolithic F

ADF F
Monollthlc F

'
T A . Vo
'.“A"y". o -""'

Fitness (Hits)

v 1‘\1
l ’c l‘ll‘ [I
l \

\
"""; N l‘.\.v.' P \se
' ',] x' ,\’n y

|
{

| | | | |
20 40 60 80 100 120 140 160 180 200
Epochs (5 Generations each)

Figure 2: Average fitness values at the start (F;) and end
(F,) of each epoch when regressing to y = Asin(Ax). A is
selected at the start of each epoch uniformly from the range
10,6).

Modularity via Push

?
<>.Q Q ::'
't <><§> 5% P

.-: Q} q}{}‘b <§> —{F— cpochstan

—
o
|

........ G...--.u epoch qnd

|
an
|

&verage hats of best-cf-generation program

The Odd Problem

® |nteger input
® Boolean output
® Was the input odd!?

® ((code.nth) code.atom)

Evolved List Reverse

® |nput is list of integers on the CODE stack.

® PushGP produced the following general
solution:

LAt T

Auto-simplification

Loop:
Make it randomly simpler
If it’s as good or better: keep it

Otherwise: revert

Evolved List Reverse (2)

® The evolved general solution simplifies to:
(CODE.DO* INTEGER.STACKDEPTH EXEC.DO*TIMES
CODE . FROMINTEGER CODE.STACKDEPTH
EXEC.DO*TIMES CODE.CONS)

® This works by executing the input list, then
moving all of the integers individually to the
CODE stack, then building the reversed list.

Evolved Factorial

Two simplified evolved general solutions:

(1 EXEC.DO*RANGE INTEGER. *)
Runs a loop that just multiplies all of the loop counter values.

(INTEGER.* INTEGER.STACKDEPTH CODE.DO*RANGE
INTEGER .MAX)

Recursively executes the whole program, which is on the CODE stack;
INTEGER.STACKDEPTH produces the | for the loop index lower
bound, and INTEGER.MAX pulls each product out from under each
INTEGER.STACKDEPTH,; only the first CODE.DO*RANGE is executed
in a context with code on the CODE stack.

Evolved Fibonacci

Two simplified evolved general solutions:

(EXEC.DO*TIMES (CODE.LENGTH EXEC.S)
INTEGER.STACKDEPTH CODE.YANKDUP)

Builds an expression with Fibonacci(input) instances of
INTEGER.STACKDEPTH on the EXEC stack, then executes them all.

(EXEC.DO*COUNT EXEC.S CODE.QUOTE NAME.=
CODE .DO*COUNT CODE.YANKDUP CODE.DO*COUNT
CODE.CONS CODE.STACKDEPTH)

Builds an expression with Fibonacci(input) instances of NAME.= on
the CODE stack, then executes CODE.STACKDEPTH.

Evolved Even Parity

® |nput is list of Boolean values on the CODE
stack.

® Goal is a general solution that solves the
problem for any number of inputs.

Evolved Even Parity (2)

Two simplified evolved general solutions:

(CODE.DO* EXEC.Y BOOLEAN.=)
Terminates only when execution limit is reached; works only for even
number of inputs.

((((CODE.POP CODE.DO BOOLEAN.STACKDEPTH)
(EXEC.DO*TIMES) (BOOLEAN.= BOOLEAN.NOT))))
100% correct, general, terminating; see paper for explanation.

Evolved Expt(2,n)

® Normally an easy problem, but here we
attempted to evolve solutions without iteration

Instructions.

The following evolved solution uses novel
evolved control structures (but does not
generalize beyond the training cases, n=1-8):

((INTEGER.DUP EXEC.YANKDUP EXEC.FLUSH 2
CODE.LENGTH) 8 (2 8 INTEGER.* INTEGER.DUP)
(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))
BOOLEAN.DEFINE EXEC.YANK)))

Evolved Sort

® |nput/output in an external data structure

accessed with INTEGER.LIST-SWAP,
INTEGER.LIST-LENGTH, INTEGER.LIST-GET,

INTEGER.LIST-COMPARE.

Simplified evolved general solution that makes
n*(n-1) comparisons:

(INTEGER.LIST-LENGTH INTEGER.SHOVE
INTEGER.STACKDEPTH CODE.DO*RANGE
INTEGER.YANKDUP INTEGER.DUP EXEC.DO*COUNT
INTEGER.LIST-COMPARE INTEGER.LIST-SWAP)

U(1.234)

H uc19200 |-

1”2

Figure 8.7. A gate array diagram for an evolved version of Grover's database search
algorithm for a 4-item database. The full gate array is shown at the top, with M,
and M; standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The “f"

gate is the oracle.

Humies 2004
GOLD MEDAL

Autoconstructive
Evolution

Individuals make their own children.

Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

The machinery of reproduction and

diversification (i.e., the machinery of evolution)
evolves.

Radical self-adaptation.

Motivation

We have very little clue about the best way
to generate offspring in standard GP.

We have no clue whatsoever about the best
way to generate offspring in GP with the rich
program representations that will become
increasingly important.

Natural reproductive methods evolved.

Natural reproductive methods co-evolved with
the organisms that use them, in the environments
in which they use them.

Related VWork

® MetaGP: but (I) programs and reproductive
strategies dissociated and (2) generally restricted
reproductive strategies.

® Alife systems such as Tierra, Avida, SeMar: but (1)

hand-crafted ancestors, (2) reliance on cosmic ray
mutation, and (3) weak problem solving.

Evolved self-reproduction: but generally exact
reproduction, non-improving (exception: Koza,
but very limited tools for problem solving and for
construction of offspring).

Pushpop

® A soup of evolving Push programs.

® Reproductive procedures emerge ex nihilo:

No hand-designed “ancestor.”
Children constructed by any computable process.

No externally applied mutation procedure or rate.

Exact clones are prohibited, but near-clones are
permitted.

® Selection for problem-solving performance.

Population of randomly
generated organisms

Test problem-solving fithess
and produce children

Evaluated, pregnant
organisms

Fitness tournaments

Add random organisms
if too few

Child population

Species vs. Mother/Child Differences

Note distribution of “+” points: adaptive populations have many species and mother/daughter
differences in a relatively high, narrow range (above near-clone levels).

I I I I I I I I I I
reproductively competent, unsolved phases: adoptive reproductively competent, unsolved phases: odaptive
reproductively competent, unsolwed phazes: non-adaptive reproductively campetent, unzolved phaszes: non-adaptive
reproductively incompetent phaszes reproductively incompetent phases

zalved phazes zalved phases

s
=

=)
=
=)
=

mn
=

mn
=

()
=

()
=

[
=
[
=

[i} [i}
[&] [&]
[[
(] (]
- -
[i] [i]
Yy Yy
Y Y
o o
= =
= =
= i3 - =
= a =
[} [}
5 5
Z24p Z24p
4+ 4+
o o
= =
[1i] [1i]
ch ch
[=] [=]
- -
[i] [i]
= =
[=] [=]
L] L]
cn cn
[n] [n]
- -
[i] [i]
= =
=] =]

iy
=

—near-clones—

A
e A

average count of diameter-16 species average count of diameter-16 species

Runs including Runs without
sexual instructions sexual instructions

Pushpop Results

® |n adaptive populations:

® Species are more numerous.

® Diversification processes are more reliable.
® Selection can promote diversity.

® Provides a possible explanation for the evolution
of diversifying reproductive systems.

® Weak problem-solving power.

e Difficult to analyze results.

SwarmkEvolve 2.0

Behavior (including reproduction) controlled
by evolved Push programes.

Color, color-based agent discrimination
controlled by agents.

Energy conservation.
Facilities for communication, energy sharing.

Ample user feedback (e.g. diversity metrics,
agent energy determines size).

SwarmkEvolve 2.0

AutoPush

Goals:
® Superior problem-solving performance.
® Tractable analysis.

Pus

n3.
Clojure (incidental, but fun!) ‘ ’

Asexual (for now).

Children produced on demand (not during
fitness testing).

Constraints on selection and birth.

Definitions

¢ Improvement: Recency-weighted average of

vector of improvements (1), declines (-1), and
repeats (0).

Discrepancy: Sum, over all unique expressions
in two programs, of the difference between the

numbers of occurrences of the expression in the
two programes.

Constraints on Selection

® Prefer reproductively competent parents.

® Prefer parents with non-stagnant lineages
(changed performance in the most recent half
of the lineage, after some threshold lineage
length).

® Prefer parents with good problem-solving
performance.

® (Possibly) Prefer parents from lineages with
better-improving problem-solving performance.

Constraints on Birth

Prevent birth from lineages with insufficient
Improvement.

Prevent birth from lineages with constant
discrepancies.

Prevent birth from parents with fitness
penalties, e.g. for non-termination.

Prevent birth of children of illegal sizes.

Prevent birth of children identical to
ancestors or potential siblings.

Preliminary Results

® Simple symbolic regression successes
® y=x3-2x%-x
® y=x°-2x*+x3-2

® Prime-generating polynomials

® |nstructive lineage traces

Ancestor of Success

(for y=x3-2x°-x)

((code if (code noop) boolean fromfloat (2)
integer fromfloat) (code rand integer rot)
exec swap code append integer mult)

Produces children of the form:

(RANDOM-INSTRUCTION (code if (code noop)
boolean fromfloat (2) integer fromfloat)
(code rand integer rot) exec swap

code append integer mult)

Six Generations Later

A descendent of the form:

(SUB-EXPRESSION-1 SUB-EXPRESSION-2)

Produces children of the form:

((RANDOM-INSTRUCTION-1 (SUB-EXPRESSION-1))
(RANDOM-INSTRUCTION-2 (SUB-EXPRESSION-2)))

One Generation Later

A solution, which incidentally inherits the same
reproductive strategy:

((integer stackdepth (boolean and

code map)) (integer sub (integer stackdepth
(integer sub (1in (code wrap (code 1if

(code noop) boolean fromfloat (2)

integer fromfloat) (code rand integer rot)
exec swap code append integer mult))))))

Recent Enhancements

® Decimation (r-selection vs. k-selection)

® Reference via tags (Holland).

SEARCH

National Science Foundation S Wb Sis »

WHERE DISCOVERIES BEGIN :)

HOME | FUNDING | AWARDS | DISCOVERIES | NEWS | PUBLICATIONS | STATISTICS | ABOUT | FastLane

Award Abstract #1017817

RI: Small: RUI: Evolution of Robustly Intelligent Computational
Systems

NSF Org: IIS
Search Awards Division of Information & Intelligent Systems

R tA d
_ecen wards Initial Amendment Date: August 19, 2010

Presidential and Honorary
Awards

About Awards

How to Manage Your Award

Grant Policy Manual Award Instrument: Standard Grant

Grant General Conditions

Latest Amendment Date: August 19, 2010

Award Number: 1017817

Program Manager: Sven G. Koenig

11S Division of Information & Intelligent Systems
Cooperative Agreement CSE Directorate for Computer & Information Science &
Conditions
- Engineering

Special Conditions

Federal Demonstration
Partnership

Policy Office Website

Start Date: September 1, 2010

Expires: August 31, 2013 (Estimated)

Awarded Amount to Date: $423288

This project is extending the science of automatic programming, using concepts
derived from evolutionary biology and software engineering, to permit the
evolution of general and robust computational systems with multiple interacting
functionalities and interfaces. The project uses the Pl's Push programming
language as the target language for evolved programs. Push programs are
syntactically unconstrained, which facilitates evolution, but they can make use of
arbitrary control and data structures; this supports the evolution of complex,
modular programs.

This project will add new features to the Push language and develop new
methods that allow requirements specifications and tests, of the type employed
in software engineering practice, to be transformed into fitness functions that
drive evolution. The cumulative effect of these extensions will be to support the
evolution of significantly more general and robust computational systems.

The effectiveness of the technologies developed in this project will be
demonstrated in two application areas: the automatic programming of small but
complete productivity software applications and the automatic programming of
robustly intelligent software agents for complex, time-varying economic games.
The project is contributing to long-standing goals in computer science of building
robustly intelligent systems and automatic synthesis of useful computer
programs.

Conclusions

® Rich representations, such as those provided by
the Push programming language, can allow
genetic programming to solve a wide range of
difficult problems.

¢ Bold (unsupported!) prediction: The most

bowerful, practical genetic programming systems of
the future will be autoconstructive.

USA s Change

N Springer

HOME & MY SPRINGER = SUBJECTS . SERVICES @ IMPRINTS & PUBLISHERS | ABOUTUS GO
»Am:ﬁdalInteuigence Home > Computer Science > Artficial Inteligence

SUBDISCIPLINES | JOURNALS @ TEXTBOOKS | SERIES : BOOKS ! =W v I = READ THIS JOURNAL ON SPRINGERLINK
Online First Articles
Current Issue

W S V- W .

GENETIC
PROGRAMMING Main editor: L. Spector Free Electronic Sample Copy
AND EVOLVABLE o

ISSN: 1389-2576 (print i
MACHINES (print version)

ISS: 15737632 (dctroic verson) - FORAUTRORSANDEDIORS
Journal no. 10710 Aims and Scope
Submit Online
Instructions for Authors
CFP: Evolvable Hardware Challenges (pdf...
CFP EAs for Data Mining (pdf, 120 kB)

SERVICES FOR THE JOURNAL
...A unique source reporting on methods for artificial evolution of programs and machines...

Methods for artificial evolution of active components are rapidly developing branches of adaptive Contacts
computation and adaptive engineering. They entail the development, evaluation and application .

of methods that mirror the process of neo-Darwinian evolution, Genetic Programming and Order back issues
Evolvable Machines reports innovative and significant progress in automatic evolution of software d

and hardware. It features both theoretical and application papers and covers hardware Bulk Orders
implementations, artificial life, molecular computing and emergent computation technigues. Article Reprints

In addition 10 its main topics, the journal covers related topics such as evolutionary algorithms with
variable-size genomes, alternate methods of program induction, approaches to engineering

