
Expressive Languages for
Evolved Programs and

Autoconstructive Evolution
Lee Spector

Cognitive Science
Hampshire College

(& Computer Science, U. Mass Amherst)

http://hampshire.edu/lspector

http://hampshire.edu/lspector
http://hampshire.edu/lspector

Outline

• Evolutionary computation comes of age

• Representations

• Genetic programming

• Expressive languages

• Push

• Autoconstructive Evolution

?

Evolutionary Computation

100100010101 001101001110 100100101000 100111001011 110111110111

111110010001 010101010011 101101000101 100100011101 110101010010

110000011111 000111010100 110101011001 111010001001 110100100110

101111010110 110010110101 111101001011 101101111010 000011100111

000111100011 010110001000 111001001110 101010111111 011011011100

111100100011 011000100110 111001001110 001001101100 100100100000

100001101011 000001000011 101110101100 100001110100 010011010101

010000100110 100101101010 010111000100 011101100101 000010011111

100001010010 010111101111 101101110100 010111011001 011001010110

Traditional Genetic
Algorithms

• Interesting dynamics

• Rarely solve interesting hard problems

!

!
"#$!

"%$! "&$!

! !
"'$! "($! ")$! "*$!

!
"+$! ",$!

"#$%! &%! '()*! +*,! -./0#$1.23#4*!)*5104#-)--! "%$!.%//01! 23,*,4%5! 3%&6! %4'! 1(&/23! 1257/,248!

9:;<!=>8!"#$!.%//!,?@32A(?(4/8!9:;B8!"&$!.%//01!),31/!1/3%,*+/C5,4(!5,46%*(!?(&+%4,1?!=9D>8!"'$!

E2#(3/01! 5,46%*(8! 9;B9! "($! F+(#G1+(A01! 5,46%*(8! 9;H:! ")$! I(%7&(55,(301! 5,46%*(8! 9;:J8! "*$!

K,5A(31/(3CL(?@(01! 5,46%*(8! 9;::8! "+$!F+(#G1+(A01! &2?#,4%/,248! 9;H:! ",$!F+(#G1+(ACMA%41!

&2?#,4%/,248!9NO:P!Q32?!=;>P!

!"#$%$&'$'()"$*)(+,$(-$#."$*&)&//"/$'(#0(1$#.&1$(-$&1!$(#.")$'"2.&102&/$013"1#0(1$%$
.&3"$"3")$'&,"!!=9D>P!
K,4&(!/+(!,4,/,%5!,4&(@/,24!2)!/+(!1/3%,*+/C5,4(!?(&+%4,1?8!?%4G!,4A(4/231!(4*%*('!

,4! ,?@32A,4*!%4'!&3(%/,4*!%5/(34%/,A(!'(1,*41P!Q,*73(1!H'C,! 1+2R!%!47?#(3!2)!%'',C

/,24%5! @3%&/,&%5! '(1,*41P! S+(! 2#1(11,24! R,/+! /+(! 1/3%,*+/C5,4(! ?(&+%4,1?! &24/,47('!

R(55!#(G24'!R+%/! ,/1!@3%&/,&%5!71()754(11!?(3,/('8! /2!#(&2?(!%!?%/+(?%/,&%5!@7TT5(!

,4! ,/1! 2R4! 3,*+/P! S+(! &+%55(4*(! &24/,47('! (A(4! %)/(3! /+(! ,4A(4/,24! 2)! /+(! @(3)(&/!

?(&+%4,1?!#G!I(%7&(55,(3!,4!9;:J!U!%!&(4/73G!%)/(3!.%//01!,4,/,%5!,4A(4/,24P!V7?(3C

271! 1/3%,*+/C5,4(! ?(&+%4,1?1! R(3(! @32@21('8! %1! (A,'(4/!)32?! /+(! JN! ',))(3(4/!

1/3%,*+/C5,4(!?(&+%4,1?1!1+2R4!,4!/+(!W2,*/!&%/%52*!=9N>!2)!('7&%/,24%5!?2'(51!"Q,*C

LipsonGECCO Humies

Lipson, H. 2004.Lipson, H. 2004.Lipson, H. 2004.

Lohn, Hornby and LindenSpector

Islands and Migration

Genetic Programming

• Evolutionary computing to produce
executable computer programs.

• Programs are tested by executing them.

Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
! (+ 4 (- Z 23)))

Mutating Lisp

Parent 1:!(+ (* X Y)
 (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! ! (* (- (* 2 Z) 1)
! ! (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! ! (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! ! (* (* X Y)
! ! (+ 14 (/ Y X))))

Recombining Lisp

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression

Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters

y = x3-0.2Evolving

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Target

(- (% (* 0.1
 (* X X))
 (- (% 0.1 0.1)
 (* X X)))
 0.1)

Best Program, Gen 0

-0.25

0

0.25

0.5

0.75

1

0

0.
25 0.
5

0.
75 1

Generation 0

Target

(- (* (* (% X 0.1)
 (* 0.1 X))
 (- X
 (% 0.1 X)))
 0.1)

Best Program, Gen 5

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 5

Target

(+ (- (- 0.1
 (- 0.1
 (- (* X X)
 (+ 0.1
 (- 0.1
 (* 0.1
 0.1))))))
 (* X
 (* (% 0.1
 (% (* (* (- 0.1 0.1)
 (+ X
 (- 0.1 0.1)))
 X)
 (+ X (+ (- X 0.1)
 (* X X)))))
 (+ 0.1 (+ 0.1 X)))))
 (* X X))

Best Program, Gen 12

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 12

Target

(- (- (* X (* X X))
 0.1)
 0.1)

Best Program, Gen 22

-0.25

0

0.25

0.5

0.75

0

0.
25 0.

5

0.
75 1

Generation 22

Target

Genetic Programming for Finite Algebras

Lee Spector
Cognitive Science

Hampshire College

Amherst, MA 01002

lspector@hampshire.edu

David M. Clark
Mathematics

SUNY New Paltz

New Paltz, NY 12561

clarkd@newpaltz.edu

Ian Lindsay
Hampshire College

Amherst, MA 01002

iml04@hampshire.edu

Bradford Barr
Hampshire College

Amherst, MA 01002

bradford.barr@gmail.com

Jon Klein
Hampshire College

Amherst, MA 01002

jk@artificial.com

ABSTRACT

We describe the application of genetic programming (GP)

to a problem in pure mathematics, in the study of finite al-

gebras. We document the production of human-competitive

results in the discovery of particular algebraic terms, namely

discriminator, Pixley, majority and Mal’cev terms, showing

that GP can exceed the performance of every prior method

of finding these terms in either time or size by several or-

ders of magnitude. Our terms were produced using the ECJ

and PushGP genetic programming systems in configurations

that included alternative code generators, asynchronous is-

lands, trivial geography, parsimony-based selection, alpha-

inverted selection pressure, and fitness case challenges. We

conclude with a discussion of the prospects for further ap-

plications of the presented methods.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming—

program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms

Algorithms, Experimentation, Performance

Keywords

ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION

Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area

in which open questions can be resolved by discovering rela-

tively small equations, terms, or finite structures is a promis-

ing area for the application of GP. For some such questions

the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-

ers the specific properties of discovered solutions may have

additional implications or provide additional insights.

In this paper we present initial but promising results from

the application of GP to an area of pure mathematics, the

study of finite algebras. While the idea for application in

this general area has been raised in the literature [?], we are

not aware of significant prior results. We document here the

discovery of particular algebraic terms that have both theo-

retical significance and quantifiable difficulty, and we argue

that the results we have achieved are human-competitive

according to widely promulgated criteria.

In the following section we briefly describe the relevant

mathematical context and the specific problems solved. In

Section ?? we describe the GP techniques that we used to

produce our results, which are themselves presented in Sec-

tion ??. In Section ?? we discuss the significance of these

results, including our claims of human-competitive perfor-

mance, and in Section ?? we summarize our findings and

discuss prospects for further applications of the presented

methods.

2. FINITE ALGEBRAS

For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := �A, F � consists of an underlying set A and an asso-

ciated collection F of operations f : Ar → A on A. The

natural number r is called the arity of the operation f . Uni-

versal algebra is a significant branch of mathematics with a

long history (for example see [?], [?], [?]), important sub-

disciplines such as group theory [?], and applications to sev-

eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in

which the underlying set is finite. The finite algebra most

familiar to most computer scientists is the ordinary two-

element Boolean algebra, B := �{0, 1},∧,∨,¬�, in which

the underlying set is {0, 1} and the associated operations

are the Boolean operators AND (∧), OR (∨) and NOT (¬).

These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-

bra is the fact that this small set of operations is sufficient

Humies 2008
GOLD MEDAL

Primal: every possible operation can be expressed by a
term using only (and not even) ∧, ∨, and ¬.

Genetic Programming for Finite Algebras

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

ABSTRACT

We describe the application of genetic programming (GP)

to a problem in pure mathematics, in the study of finite al-

gebras. We document the production of human-competitive

results in the discovery of particular algebraic terms, namely

discriminator, Pixley, majority and Mal’cev terms, showing

that GP can exceed the performance of every prior method

of finding these terms in either time or size by several or-

ders of magnitude. Our terms were produced using the ECJ

and PushGP genetic programming systems in configurations

that included alternative code generators, asynchronous is-

lands, trivial geography, parsimony-based selection, alpha-

inverted selection pressure, and fitness case challenges. We

conclude with a discussion of the prospects for further ap-

plications of the presented methods.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming—

program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms

Algorithms, Experimentation, Performance

Keywords

ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION

Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area

in which open questions can be resolved by discovering rela-

tively small equations, terms, or finite structures is a promis-

ing area for the application of GP. For some such questions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the very existence of a constraint-satisfying equation, term

or structure may settle the issue under study, while for oth-

ers the specific properties of discovered solutions may have

additional implications or provide additional insights.

In this paper we present initial but promising results from

the application of GP to an area of pure mathematics, the

study of finite algebras. While the idea for application in

this general area has been raised in the literature [16], we

are not aware of significant prior results. We document here

the discovery of particular algebraic terms that have both

theoretical significance and quantifiable difficulty, and we ar-

gue that the results we have achieved are human-competitive

according to widely promulgated criteria.

In the following section we briefly describe the relevant

mathematical context and the specific problems solved. In

Section 3 we describe the GP techniques that we used to pro-

duce our results, which are themselves presented in Section

4. In Section 5 we discuss the significance of these results, in-

cluding our claims of human-competitive performance, and

in Section 6 we summarize our findings and discuss prospects

for further applications of the presented methods.

2. FINITE ALGEBRAS

For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := �A, F � consists of an underlying set A and an asso-

ciated collection F of operations f : Ar → A on A. The

natural number r is called the arity of the operation f . Uni-

versal algebra is a significant branch of mathematics with a

long history (for example see [29], [9], [2]), important sub-

disciplines such as group theory [18], and applications to sev-

eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in

which the underlying set is finite. The finite algebra most

familiar to most computer scientists is the ordinary two-

element Boolean algebra, B := �{0, 1},∧,∨,¬�, in which

the underlying set is {0, 1} and the associated operations

are the Boolean operators AND (∧), OR (∨) and NOT (¬).

These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-

bra is the fact that this small set of operations is sufficient

Genetic Programming for Finite Algebras

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Deptartment

Anonymous Institution
Anonymous City, Country

anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

Anonymous Author
Anonymous Institution

Anonymous City, Country
anon@ym.ous

ABSTRACT

We describe the application of genetic programming (GP)

to a problem in pure mathematics, in the study of finite al-

gebras. We document the production of human-competitive

results in the discovery of particular algebraic terms, namely

discriminator, Pixley, majority and Mal’cev terms, showing

that GP can exceed the performance of every prior method

of finding these terms in either time or size by several or-

ders of magnitude. Our terms were produced using the ECJ

and PushGP genetic programming systems in configurations

that included alternative code generators, asynchronous is-

lands, trivial geography, parsimony-based selection, alpha-

inverted selection pressure, and fitness case challenges. We

conclude with a discussion of the prospects for further ap-

plications of the presented methods.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming—

program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms

Algorithms, Experimentation, Performance

Keywords

ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION

Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area

in which open questions can be resolved by discovering rela-

tively small equations, terms, or finite structures is a promis-

ing area for the application of GP. For some such questions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the very existence of a constraint-satisfying equation, term

or structure may settle the issue under study, while for oth-

ers the specific properties of discovered solutions may have

additional implications or provide additional insights.

In this paper we present initial but promising results from

the application of GP to an area of pure mathematics, the

study of finite algebras. While the idea for application in

this general area has been raised in the literature [16], we

are not aware of significant prior results. We document here

the discovery of particular algebraic terms that have both

theoretical significance and quantifiable difficulty, and we ar-

gue that the results we have achieved are human-competitive

according to widely promulgated criteria.

In the following section we briefly describe the relevant

mathematical context and the specific problems solved. In

Section 3 we describe the GP techniques that we used to pro-

duce our results, which are themselves presented in Section

4. In Section 5 we discuss the significance of these results, in-

cluding our claims of human-competitive performance, and

in Section 6 we summarize our findings and discuss prospects

for further applications of the presented methods.

2. FINITE ALGEBRAS

For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := �A, F � consists of an underlying set A and an asso-

ciated collection F of operations f : Ar → A on A. The

natural number r is called the arity of the operation f . Uni-

versal algebra is a significant branch of mathematics with a

long history (for example see [29], [9], [2]), important sub-

disciplines such as group theory [18], and applications to sev-

eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in

which the underlying set is finite. The finite algebra most

familiar to most computer scientists is the ordinary two-

element Boolean algebra, B := �{0, 1},∧,∨,¬�, in which

the underlying set is {0, 1} and the associated operations

are the Boolean operators AND (∧), OR (∨) and NOT (¬).

These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-

bra is the fact that this small set of operations is sufficient

Everybody’s Favorite
Finite Algebra

Bigger Finite Algebras

• Have applications in many areas of science,
engineering, mathematics

• Can be much harder to analyze/understand

• Number of terms grows astronomically with
size of underlying set

Goal
• Find terms that have certain special properties

• Discriminator terms, determine primality

• Mal’cev, majority, and Pixley terms

• For decades there was no way to produce these
terms in general, short of exhaustive search

• Current best methods produce enormous terms

for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 → {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) ≈ m(y, x, x) ≈ y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a �majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) ≈ j(y, x, x) ≈ j(x, y, x) ≈ x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) ≈ p(y, x, x) ≈ y and p(x, y, x) ≈ x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x �= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time efficient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 ∗ 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 ∗ 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 ∗ 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 ∗ 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 ∗ 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 ∗ 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES

In the following subsections we describe the specific GP
techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational effort.
In any event our claims here are not for the peculiar efficacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ

Most of the results presented in this paper were produced
using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/

Algebras Explored
for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 → {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) ≈ m(y, x, x) ≈ y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a �majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) ≈ j(y, x, x) ≈ j(x, y, x) ≈ x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) ≈ p(y, x, x) ≈ y and p(x, y, x) ≈ x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x �= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time efficient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 ∗ 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 ∗ 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 ∗ 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 ∗ 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 ∗ 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 ∗ 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES

In the following subsections we describe the specific GP
techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational effort.
In any event our claims here are not for the peculiar efficacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ

Most of the results presented in this paper were produced
using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/

Results

• Discriminators for A1, A2, A3, A4, A5

• Mal’cev and majority terms for B1

• Example Mal’cev term for B1:

((((((((x*(y*x))*x)*z)*(z*x))*((x*(z*(x*(z*y))))*z))*z)
z)(z*((((x*(((z*z)*x)*(z*x)))*x)*y)*(((y*(z*(z*y)))*
(((y*y)*x)*z))*(x*(((z*z)*x)*(z*(x*(z*y)))))))))

Significance, Time

Significance, Time

Significance, Size

(for A1)

Significance, Size

(for A1)

Human Competitive?
• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

• Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field

Expressive Languages

• Strongly typed genetic programming

• Automatically defined functions

• Automatically defined macros

• Architecture-altering operations

• Developmental genetic programming

• Push provides all of the above and more, all
without any mechanisms beyond the stack-
based execution architecture

Expressive Languages

• Strongly typed genetic programming

• Automatically defined functions

• Automatically defined macros

• Architecture-altering operations

• Developmental genetic programming

• Push provides all of the above and more, all
without any mechanisms beyond the stack-
based execution architecture

Types
• Most useful programs manipulate multiple

data types.

• Single type or multiple type closures.

• Strongly typed genetic programming:
constraints on code generation and genetic
operators (Montana).

• Polymorphism (Yu and Clack).

• Stack-based GP with typed stacks (Spector).

Modules
• Automatically-defined functions (Koza).

• Automatically-defined macros (Spector).

• Architecture-altering operations (Koza).

• Module acquisition/encapsulation systems
(Kinnear, Roberts, many others).

• Push approach: instructions that can build/
execute modules with no changes to the
system’s representations or algorithms.

• A programming language designed for programs
that evolve.

• Simplifies evolution of programs that may use:
 • multiple data types
 • subroutines (any architecture)
 • recursion and iteration
 • evolved control structures
 • evolved evolutionary mechanisms

Push

Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code,
exec, vector, matrix, quantum gate, [add more as
needed]

• Missing argument? NOOP

• Trivial syntax:
program → instruction | literal | (program*)

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

2

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE 3

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6

exec code bool int float

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

FLOAT.+

TRUE

FALSE 5.2

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

Same Results

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+)

(3.14 CODE.REVERSE
CODE.CDR IN IN

5.0 FLOAT.>
(CODE.QUOTE FLOAT.*)

CODE.IF)

(3.14 CODE.REVERSE
CODE.CDR IN IN

5.0 FLOAT.>
(CODE.QUOTE FLOAT.*)

CODE.IF)

exec code bool int float

(3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF)

IN=4.0

3.14

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(3.14 CODE.REVERSE

CODE.CDR IN IN
5.0 FLOAT.>

(CODE.QUOTE FLOAT.*)
CODE.IF)

exec code bool int float

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(3.14 CODE.REVERSE

CODE.CDR IN IN
5.0 FLOAT.>

(CODE.QUOTE FLOAT.*)
CODE.IF)

3.14

exec code bool int float

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(CODE.IF (CODE.QUOTE
FLOAT.*) FLOAT.> 5.0 IN

IN CODE.CDR
CODE.REVERSE 3.14)

3.14

exec code bool int float

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

CODE.QUOTE

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

4.0

FLOAT.* 3.14

exec code bool int float

12.56

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./)

(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.*)
10.0 FLOAT./)

IN=4.0

IN

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

(3.13 FLOAT.*)

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

3.13

FLOAT.*

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

FLOAT.*

(3.13 FLOAT.*)

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

3.13

FLOAT.*

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

FLOAT.*

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 3.91876

exec code bool int float

Combinators

• Standard K, S, and Y combinators:

• EXEC.K removes the second item from the EXEC stack.

• EXEC.S pops three items (call them A, B, and C) and
then pushes (B C), C, and then A.

• EXEC.Y inserts (EXEC.Y T) under the top item (T).

• A Y-based “while” loop:
(EXEC.Y
 (<BODY/CONDITION> EXEC.IF
 () EXEC.POP))

Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE.DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

Named Subroutines

(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Modularity
Ackley and Van Belle

Modularity via Push

The Odd Problem

• Integer input

• Boolean output

• Was the input odd?

•((code.nth) code.atom)

Evolved List Reverse

• Input is list of integers on the CODE stack.

• PushGP produced the following general
solution:
(CODE.DO*TIMES (CODE.DO* CODE.LIST (((INTEGER.STACKDEPTH EXEC.DO*TIMES) (BOOLEAN.YANKDUP CODE.FROMINTEGER)) CODE.FROMINTEGER INTEGER.SWAP) (CODE.YANKDUP INTEGER.% (BOOLEAN.AND) CODE.STACKDEPTH EXEC.DO*TIMES)) (CODE.CONS) (BOOLEAN.SHOVE (CODE.EXTRACT EXEC.S (EXEC.FLUSH CODE.IF BOOLEAN.YANK (CODE.FROMINTEGER CODE.ATOM (CODE.SWAP BOOLEAN.SHOVE (INTEGER.MAX) (CODE.QUOTE CODE.APPEND CODE.IF)) ((CODE.ATOM CODE.SHOVE EXEC.POP (CODE.DO*TIMES BOOLEAN.SHOVE) INTEGER.ROT) (INTEGER.> BOOLEAN.AND CODE.DO* INTEGER.ROT) CODE.CONS INTEGER.ROT ((CODE.NTHCDR) INTEGER.ROT BOOLEAN.DUP) INTEGER.SHOVE (CODE.FROMNAME (CODE.CONS CODE.FROMINTEGER)))) CODE.LENGTH INTEGER.MAX EXEC.Y)) (BOOLEAN.= (CODE.QUOTE INTEGER.SWAP) CODE.POP) INTEGER.FLUSH))

Auto-simplification

Loop:

Make it randomly simpler

If it’s as good or better: keep it

Otherwise: revert

Evolved List Reverse (2)

• The evolved general solution simplifies to:
(CODE.DO* INTEGER.STACKDEPTH EXEC.DO*TIMES
CODE.FROMINTEGER CODE.STACKDEPTH
EXEC.DO*TIMES CODE.CONS)

• This works by executing the input list, then
moving all of the integers individually to the
CODE stack, then building the reversed list.

Evolved Factorial

Two simplified evolved general solutions:

(1 EXEC.DO*RANGE INTEGER.*)
Runs a loop that just multiplies all of the loop counter values.

(INTEGER.* INTEGER.STACKDEPTH CODE.DO*RANGE
INTEGER.MAX)
Recursively executes the whole program, which is on the CODE stack;
INTEGER.STACKDEPTH produces the 1 for the loop index lower
bound, and INTEGER.MAX pulls each product out from under each
INTEGER.STACKDEPTH; only the first CODE.DO*RANGE is executed
in a context with code on the CODE stack.

Evolved Fibonacci

Two simplified evolved general solutions:

(EXEC.DO*TIMES (CODE.LENGTH EXEC.S)
INTEGER.STACKDEPTH CODE.YANKDUP)
Builds an expression with Fibonacci(input) instances of
INTEGER.STACKDEPTH on the EXEC stack, then executes them all.

(EXEC.DO*COUNT EXEC.S CODE.QUOTE NAME.=
CODE.DO*COUNT CODE.YANKDUP CODE.DO*COUNT
CODE.CONS CODE.STACKDEPTH)
Builds an expression with Fibonacci(input) instances of NAME.= on
the CODE stack, then executes CODE.STACKDEPTH.

Evolved Even Parity

• Input is list of Boolean values on the CODE
stack.

• Goal is a general solution that solves the
problem for any number of inputs.

Evolved Even Parity (2)

Two simplified evolved general solutions:

(CODE.DO* EXEC.Y BOOLEAN.=)
Terminates only when execution limit is reached; works only for even
number of inputs.

((((CODE.POP CODE.DO BOOLEAN.STACKDEPTH)
(EXEC.DO*TIMES) (BOOLEAN.= BOOLEAN.NOT))))
100% correct, general, terminating; see paper for explanation.

Evolved Expt(2,n)
• Normally an easy problem, but here we

attempted to evolve solutions without iteration
instructions.

• The following evolved solution uses novel
evolved control structures (but does not
generalize beyond the training cases, n=1-8):

((INTEGER.DUP EXEC.YANKDUP EXEC.FLUSH 2
CODE.LENGTH) 8 (2 8 INTEGER.* INTEGER.DUP)
(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))
BOOLEAN.DEFINE EXEC.YANK)))

Evolved Sort
• Input/output in an external data structure

accessed with INTEGER.LIST-SWAP,
INTEGER.LIST-LENGTH, INTEGER.LIST-GET,
INTEGER.LIST-COMPARE.

• Simplified evolved general solution that makes
n*(n-1) comparisons:

(INTEGER.LIST-LENGTH INTEGER.SHOVE
INTEGER.STACKDEPTH CODE.DO*RANGE
INTEGER.YANKDUP INTEGER.DUP EXEC.DO*COUNT
INTEGER.LIST-COMPARE INTEGER.LIST-SWAP)

Humies 2004
GOLD MEDAL

• Individuals make their own children.

• Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

• The machinery of reproduction and
diversification (i.e., the machinery of evolution)
evolves.

• Radical self-adaptation.

Autoconstructive
Evolution

• We have very little clue about the best way
to generate offspring in standard GP.

• We have no clue whatsoever about the best
way to generate offspring in GP with the rich
program representations that will become
increasingly important.

• Natural reproductive methods evolved.

• Natural reproductive methods co-evolved with
the organisms that use them, in the environments
in which they use them.

Motivation

• MetaGP: but (1) programs and reproductive
strategies dissociated and (2) generally restricted
reproductive strategies.

• ALife systems such as Tierra, Avida, SeMar: but (1)
hand-crafted ancestors, (2) reliance on cosmic ray
mutation, and (3) weak problem solving.

• Evolved self-reproduction: but generally exact
reproduction, non-improving (exception: Koza,
but very limited tools for problem solving and for
construction of offspring).

Related Work

• A soup of evolving Push programs.

• Reproductive procedures emerge ex nihilo:

• No hand-designed “ancestor.”

• Children constructed by any computable process.

• No externally applied mutation procedure or rate.

• Exact clones are prohibited, but near-clones are
permitted.

• Selection for problem-solving performance.

Pushpop

Push Interpreter

(QUOTE (POP 1) QUOTE (DUP 1 - DO *) DUP 2 < IF)

X7

23

Integer
stack

3.141

0.001

12.34

Float
stack

TRUE

Boolean
stack

(+ 2 .

(POP <

Code
stack

FLOAT

CODE

Type
stack

CNOT

U

Matrix
stack

Name
stack

More stacks as needed...

Executing Program

Name/type=value bindings

X/float=3.14

f/code=(DUP...)

Stack-based language with stack per type.

Types include integer, float, Boolean, code, child,

type, name.

Supports modules (any architecture), recursion,

evolved control structures, evolved reproductive

mechanisms.

Test problem-solving fitness
and produce children

Fitness tournaments

Add random organisms
if too few

Population of randomly
generated organisms

Evaluated, pregnant
organisms

Children

Child population

Pushpop

Species vs. Mother/Child Differences

Runs including
sexual instructions

Runs without
sexual instructions

near-clones

Note distribution of “+” points: adaptive populations have many species and mother/daughter

differences in a relatively high, narrow range (above near-clone levels).

• In adaptive populations:

• Species are more numerous.

• Diversification processes are more reliable.

• Selection can promote diversity.

• Provides a possible explanation for the evolution
of diversifying reproductive systems.

• Weak problem-solving power.

• Difficult to analyze results.

Pushpop Results

• Behavior (including reproduction) controlled
by evolved Push programs.

• Color, color-based agent discrimination
controlled by agents.

• Energy conservation.

• Facilities for communication, energy sharing.

• Ample user feedback (e.g. diversity metrics,
agent energy determines size).

SwarmEvolve 2.0

SwarmEvolve 2.0

• Goals:

• Superior problem-solving performance.

• Tractable analysis.

• Push3.

• Clojure (incidental, but fun!)

• Asexual (for now).

• Children produced on demand (not during
fitness testing).

• Constraints on selection and birth.

AutoPush

• Improvement: Recency-weighted average of
vector of improvements (1), declines (-1), and
repeats (0).

• Discrepancy: Sum, over all unique expressions
in two programs, of the difference between the
numbers of occurrences of the expression in the
two programs.

Definitions

• Prefer reproductively competent parents.

• Prefer parents with non-stagnant lineages
(changed performance in the most recent half
of the lineage, after some threshold lineage
length).

• Prefer parents with good problem-solving
performance.

• (Possibly) Prefer parents from lineages with
better-improving problem-solving performance.

Constraints on Selection

• Prevent birth from lineages with insufficient
improvement.

• Prevent birth from lineages with constant
discrepancies.

• Prevent birth from parents with fitness
penalties, e.g. for non-termination.

• Prevent birth of children of illegal sizes.

• Prevent birth of children identical to
ancestors or potential siblings.

Constraints on Birth

• Simple symbolic regression successes

• y=x3-2x2-x

• y=x6-2x4+x3-2

• Prime-generating polynomials

• Instructive lineage traces

Preliminary Results

((code_if (code_noop) boolean_fromfloat (2)
integer_fromfloat) (code_rand integer_rot)
exec_swap code_append integer_mult)

Produces children of the form:

(RANDOM-INSTRUCTION (code_if (code_noop)
boolean_fromfloat (2) integer_fromfloat)
(code_rand integer_rot) exec_swap
code_append integer_mult)

Ancestor of Success
(for y=x3-2x2-x)

A descendent of the form:

(SUB-EXPRESSION-1 SUB-EXPRESSION-2)

Produces children of the form:

((RANDOM-INSTRUCTION-1 (SUB-EXPRESSION-1))
(RANDOM-INSTRUCTION-2 (SUB-EXPRESSION-2)))

Six Generations Later

A solution, which incidentally inherits the same
reproductive strategy:

((integer_stackdepth (boolean_and
code_map)) (integer_sub (integer_stackdepth
(integer_sub (in (code_wrap (code_if
(code_noop) boolean_fromfloat (2)
integer_fromfloat) (code_rand integer_rot)
exec_swap code_append integer_mult))))))

One Generation Later

Recent Enhancements

• Decimation (r-selection vs. k-selection)

• Reference via tags (Holland).

This project is extending the science of automatic programming, using concepts
derived from evolutionary biology and software engineering, to permit the
evolution of general and robust computational systems with multiple interacting
functionalities and interfaces. The project uses the PI's Push programming
language as the target language for evolved programs. Push programs are
syntactically unconstrained, which facilitates evolution, but they can make use of
arbitrary control and data structures; this supports the evolution of complex,
modular programs.

This project will add new features to the Push language and develop new
methods that allow requirements specifications and tests, of the type employed
in software engineering practice, to be transformed into fitness functions that
drive evolution. The cumulative effect of these extensions will be to support the
evolution of significantly more general and robust computational systems.

The effectiveness of the technologies developed in this project will be
demonstrated in two application areas: the automatic programming of small but
complete productivity software applications and the automatic programming of
robustly intelligent software agents for complex, time-varying economic games.
The project is contributing to long-standing goals in computer science of building
robustly intelligent systems and automatic synthesis of useful computer
programs.

• Rich representations, such as those provided by
the Push programming language, can allow
genetic programming to solve a wide range of
difficult problems.

• Bold (unsupported!) prediction: The most
powerful, practical genetic programming systems of
the future will be autoconstructive.

Conclusions

