
ULTRA!
Uniform Linear Transformation with Repair
and Alternation in Genetic Programming

Lee Spector (*, +)
Thomas Helmuth (+)

* Cognitive Science, Hampshire College
+ Computer Science, UMass Amherst

Outline

• Uniformity

• The ULTRA genetic operator

• Push

• Problems

• Results

Uniformity

• Conversation with Evelyn Fox Keller

• Interactions between genome size, expression,
functionality, gene competition, etc. in traditional
GP; e.g. bloat from protection against crossover

• “But why would you do it that way?”

• Biological genetic variation, while not fully uniform,
has uniformity properties that prevent some of the
problems we see in GP

Uniform Variation

• All genetic material that a child inherits
should be ≈ likely to be mutated

• Parts of both parents should be ≈ likely to
appear in children (at least if they are ≈ in
size), and to appear in a range of
combinations

• Should be applicable to genomes of varying
size and structure

Why Uniformity?

• No hiding from mutation

• All parts of parents subject to variation and
recombination

Prior Work
• Point mutations or “uniform crossovers” that

replace/swap nodes but only in restricted ways;
cannot change structure, has depth biases
(McKay et al, 1995; Page et al, 1998; Poli and
Langdon, 1998; Poli and Page, 2000; Semenkin and
Semenkina, 2012)

• Uniform mutation via size-based numbers of tree
replacements; depth biases, little demonstrated
benefit (McKay et al, 1995; Van Belle and Ackley,
2002)

Why it’s hard in GP

• Genomes are programs that have structure

• “Parts” of programs contain other parts!

Why ≈ ?

• Sequences and positions often matter, and
many of the obvious ways to fully satisfy the
stated uniformity criteria would not retain
them

• Not clear that full uniformity is what one
wants when parents have very different sizes

ULTRA

• Achieve uniformity by treating genomes as
linear sequences, even if they are
hierarchically structured

• Repair after transform to ensure structural
validity

Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code,
exec, vector, matrix, quantum gate, [add more as
needed]

• Missing argument? NOOP

• Minimal syntax:
program → instruction | literal | (program*)

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

2

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE 3

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6

exec code bool int float

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

FLOAT.+

TRUE

FALSE 5.2

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

Why Push?
• Many reasons!

• But one good reason to use it here is:

• Push programs can be hierarchically structured,
but every push program is structurally valid if
its parentheses are balanced

• This makes the Repair step of ULTRA, which
we will see shortly, particularly simple

• But note that ULTRA can also be applied to other
GP representations

Why Push (Elsewhere)?
• Highly expressive: data types, data

structures, variables, conditionals, loops,
recursion, modules, ...

• Elegant: minimal syntax and a simple, stack-
based execution architecture

• Evolvable

• Extensible

• Supports several forms of meta-evolution

ULTRA

• Achieve uniformity by treating genomes as
linear sequences, even if they are
hierarchically structured

• Repair after transform to ensure structural
validity

ULTRA Algorithm

• Linearize two parents

• Alternate according to alternation rate,
subject to alignment deviation

• Uniformly mutate, subject to mutation rate

• Repair

Parents:

(a b (c (d)) e (f g))

(1 (2 (3 4) 5) 6)

Result of alternation:

(a b 2 (3 4 d)) 6)

Result of repair:

(a (b 2 (3 4 d)) 6)

Problems

• Bioavailability

• Pagie-1

• Factorial

• 6-Multiplexer

Parameters
Uniform Linear Transformation with Repair and Alternation in Genetic Programming 7

Table 1 Parameters for experiments.
Problem Bioavailability Pagie-1 Factorial MUX6
Runs Per Condition 200 100 100 100
Population Size 500 1000 1000 500
Max Generations 100 1000 500 200
Max Program Size 500 500 500 200
Max Inital Program Size 500 500 100 200
Max Size for Mutation Code 50 50 20 20
Parent Selection Tournament Size 7 7 Lexicase 7

Table 2 ULTRA parameters used in our experiments. THIS TABLE NEEDS TO BE CLEANED
UP AND MENTIONED IN THE TEXT!!!

Problem Bioavailability, Pagie-1, MUX6 Factorial
ULTRA Mutation Rate 0.01 0.05
ULTRA Alternation Rate 0.01 0.05
ULTRA Alignment Deviation 10 10

each of the floating-point regression problems we used the float stack instructions
add, sub, mult, and div as the only non-input instructions. The bioavailability prob-
lem uses 241 input instructions, one for each molecular descriptor. As in (Silva and
Vanneschi, 2009), we make input instructions and arithmetic instructions equally
likely to be chosen by PushGP’s random code generator. The Pagie-1 problem only
requires the input instructions x and y. We also used the constant 1.0, but did not
provide an ephemeral random constant.

For the factorial symbolic regression we used a more extensive function set that
allowed for the manipulation and comparison of integers, boolean values, and the
execution stack (to permit conditional branches and recursion), but we did not in-
clude Push’s high-level iteration instructions that allow for trivial solutions. More
specifically we used the constants 0 and 1, an input instruction in, the boolean in-
structions and, dup, eq, frominteger, not, or, pop, rot, and swap, the integer instruc-
tions add, div, dup, eq, fromboolean, gt (greater-than, which pushes a boolean), lt
(less-than), mod, mult, pop, rot, sub, and swap, and the exec instructions dup, eq, if,
k (a combinator; see (Spector et al, 2005)), noop, pop, rot, s (another combinator),
swap, when, and y (another combinator).

For some of the problems we conducted runs in multiple non-ULTRA conditions
to show that the relative performance of ULTRA was not due solely to poor choices
of parameters for the traditional genetic operators; in these cases we describe the
runs with notation such as “81/9/10” which would mean that the run used 81%
subtree-replacement crossover, 9% subtree-replacement mutation, and 10% straight
reproduction.

For all runs described here, fitness is defined as a measure of error with lower
numbers being better. For the bioavailability problem, we use root mean square error
(RMSE) as the fitness measure. On this problem, we separate the fitness cases into
training and test sets by randomly selecting 70% of the fitness cases for training and
30% of them for testing. For this problem, we determine the statistical significance

Uniform Linear Transformation with Repair and Alternation in Genetic Programming 7

Table 1 Parameters for experiments.
Problem Bioavailability Pagie-1 Factorial MUX6
Runs Per Condition 200 100 100 100
Population Size 500 1000 1000 500
Max Generations 100 1000 500 200
Max Program Size 500 500 500 200
Max Inital Program Size 500 500 100 200
Max Size for Mutation Code 50 50 20 20
Parent Selection Tournament Size 7 7 Lexicase 7

Table 2 ULTRA parameters used in our experiments. THIS TABLE NEEDS TO BE CLEANED
UP AND MENTIONED IN THE TEXT!!!

Problem Bioavailability, Pagie-1, MUX6 Factorial
ULTRA Mutation Rate 0.01 0.05
ULTRA Alternation Rate 0.01 0.05
ULTRA Alignment Deviation 10 10

each of the floating-point regression problems we used the float stack instructions
add, sub, mult, and div as the only non-input instructions. The bioavailability prob-
lem uses 241 input instructions, one for each molecular descriptor. As in (Silva and
Vanneschi, 2009), we make input instructions and arithmetic instructions equally
likely to be chosen by PushGP’s random code generator. The Pagie-1 problem only
requires the input instructions x and y. We also used the constant 1.0, but did not
provide an ephemeral random constant.

For the factorial symbolic regression we used a more extensive function set that
allowed for the manipulation and comparison of integers, boolean values, and the
execution stack (to permit conditional branches and recursion), but we did not in-
clude Push’s high-level iteration instructions that allow for trivial solutions. More
specifically we used the constants 0 and 1, an input instruction in, the boolean in-
structions and, dup, eq, frominteger, not, or, pop, rot, and swap, the integer instruc-
tions add, div, dup, eq, fromboolean, gt (greater-than, which pushes a boolean), lt
(less-than), mod, mult, pop, rot, sub, and swap, and the exec instructions dup, eq, if,
k (a combinator; see (Spector et al, 2005)), noop, pop, rot, s (another combinator),
swap, when, and y (another combinator).

For some of the problems we conducted runs in multiple non-ULTRA conditions
to show that the relative performance of ULTRA was not due solely to poor choices
of parameters for the traditional genetic operators; in these cases we describe the
runs with notation such as “81/9/10” which would mean that the run used 81%
subtree-replacement crossover, 9% subtree-replacement mutation, and 10% straight
reproduction.

For all runs described here, fitness is defined as a measure of error with lower
numbers being better. For the bioavailability problem, we use root mean square error
(RMSE) as the fitness measure. On this problem, we separate the fitness cases into
training and test sets by randomly selecting 70% of the fitness cases for training and
30% of them for testing. For this problem, we determine the statistical significance

Bioavailability
• Floating-point predictive modeling

• Programs must predict the human oral
bioavailability of a set of drug compounds
given their molecular structure (Silva and
Vanneschi, 2009, 2010)

• 241 floating point inputs, 1 floating point
output, add, sub, mult, div

• Training: 70% of cases; Testing: 30% of cases

• Dataset is available online

Bioavailability Results

8 Lee Spector and Thomas Helmuth

of whether the RMSE results of two runs come from the same distribution using the
Kruskal-Wallis one-way analysis of variance at p = 0.01.

For the Pagie-1 problem we use mean error across fitness cases, and do not use a
test set. We present the number of successes and mean best fitnesses for the Pagie-1
runs. Mean best fitness (MBF) is the mean of the best individual fitnesses attained
in each run. The fitnesses given here are the mean errors across test cases, not the
sums of those errors. As recommended in (Luke and Panait, 2002; McDermott et al,
2012), we use unpaired t-tests to compare the differences in MBF for different con-
ditions.

5 Results

Fig. 1 Results from the
bioavailability problem. We
conducted 100 runs for each
choice of operators. The
RMSE of the best individuals
on the training fitness cases
(left) and on the test fitness
cases (right). In each plot,
subtree replacement 81/9/10
is plotted first, followed by
subtree replacement 45/45/10
and then ULTRA. In each box
plot, the box stretches from
the first quartile to the third
quartile with a line for the
median in the middle. The
whiskers extend to the fur-
thest value within 1.5 times
the inter-quartile range. Points
beyond the whiskers are out-
liers, plotted as points. Note
that in the right plot, 8 outliers
on the 81/9/10 set, 7 outliers
on the 45/45/10 set, and 3
outliers on the ULTRA set fell
outside the of the visible plot.

30

40

50

60

70

81/9/10 45/45/10 ULTRA

T
ra

in
 R

M
S

E

30

40

50

60

70

81/9/10 45/45/10 ULTRA

T
e

s
t

R
M

S
E

Figure 1 gives two box plots from our sets runs of the bioavailability problem,
where each set contains 300 runs. The left plot shows the root mean square error
(RMSE) of the best program as measured on the training set. The right plot shows
the RMSE of the same individuals on the test set. Both subtree replacement 81/9/10
and subtree replacement 45/45/10 differ statistically significantly from ULTRA on
both the training and test sets. ULTRA appears to be able to find more accurate

Bioavailability SizesUniform Linear Transformation with Repair and Alternation in Genetic Programming 9

Fig. 2 Program sizes for the
bioavailability problem.

0

100

200

300

400

500

0 25 50 75 100
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

81/9/10

45/45/10

ULTRA

Table 3 Results on the Pagie-1 problem. We conducted 100 runs for each choice of operators.
MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors over
test cases, not the summed errors.

Operators Successes MBF
Subtree Replacement 80/10/10 0 0.363
Subtree Replacement 45/45/10 0 0.319
ULTRA 15 0.036

models of the training data than subtree replacement without running into problems
of overfitting the data, which would lead to worse performance on the test set.

The mean program sizes with respect to evolutionary time are plotted in Figure 2.
The runs using subtree replacement show steady growth in program sizes, whereas
those using ULTRA quickly fall at the beginning of the run and then remain rela-
tively steady. The lower program sizes of ULTRA runs may contribute to its ability
to not overfit the data.

Table 3 presents the results of our experiments on the Pagie-1 problem. PushGP
using ULTRA found perfect solutions in 15 out of 100 runs, whereas runs with
subtree replacement found none with either parameter setting. The difference in
MBF between subtree replacement 80/10/10 and ULTRA, as well as subtree re-
placement 45/45/10 and ULTRA, is statistically significant based on an unpaired
t-test at p = 0.01. Note that the results for subtree replacement 45/45/10 are only

over 98 runs, with data from 2 runs yet to come.

The mean program sizes in our Pagie-1 experiments are given in Figure 3. Runs
using subtree replacement experienced quick code growth, reaching mean sizes near
the maximum program size of 500 within the first 50 generations. After this point,
it is difficult for the genetic operators to make changes to large programs without
exceeding the program size limit. On the other hand, the mean program sizes of
ULTRA runs quickly drop to around size 50, and then climb to approach 100. In
these runs, it is unlikely that many genetic operations will exceed the size limit.

Pagie-1
• Symbolic regression (Pagie and Hogeweg, 1997)

•

• Inputs for x and y taken uniformly from the
range [−5, 5] in steps of 0.4, resulting in 676
fitness cases.

• x, y, add, sub, mult, div

• Used and recommended for GP benchmarking
(Harper, 2012; McDermott et al, 2012; White et
al, 2013)

6 Lee Spector and Thomas Helmuth

4 Experiments

To test the performance of ULTRA compared to standard genetic operators, we
conducted runs of PushGP using each on a few problems: the drug bioavailability
problem, the Pagie-1 symbolic regression problem, factorial symbolic regression,
and the 6-multiplexer problem.

The drug bioavailability problem is a predictive modeling problem in which the
programs must predict the human oral bioavailability of a set of drug compounds
given their molecular structure (Silva and Vanneschi, 2009, 2010). This problem
has been used for genetic programming benchmarking in various studies (Silva and
Vanneschi, 2009; Harper, 2012), and is recommended as a benchmark problem in
a recent article on improving the use of benchmarks in the field (McDermott et al,
2012). Each fitness case for this problem represents a molecule, with 241 float-
ing point inputs, each of which represents a different molecular descriptor of the
molecule, and a single floating point output representing the human oral bioavail-
ability of that molecule. The dataset is available on the online.2

The Pagie-1 symbolic regression problem, proposed in (Pagie and Hogeweg,
1997), is a function on two variables of the form

f (x,y) =
1

(1+ x

�4)
+

1
(1+ y

�4)
.

Training set inputs for x and y are taken uniformly from the range [�5,5] in steps of
0.4, resulting in 676 fitness cases. This problem has also been used for GP bench-
marking (Harper, 2012), and is recommended as a symbolic regression benchmark
replacement for “toy” symbolic regression problems such as the quartic polynomial
(McDermott et al, 2012; White et al, 2013).

The factorial symbolic regression problem is an integer symbolic regression
problem with one input and one output, where the output should be the factorial
of the input. We used only 6 inputs, ranging from 1 to 6 (with outputs ranging from
1! = 1 to 6! = 720). Because error magnitudes vary significantly across cases we
used “lexicase selection” instead of tournament selection for these runs. Lexicase
selection is a parent selection algorithm that was developed to help solve problems
that are “modal” in the sense that they require solution programs to perform qual-
itatively differently actions for inputs that belong to different classes, but it is also
useful for problems in which error magnitudes are likely to vary significantly across
cases. In lexicase selection a parent is selected by starting with a pool of potential
parents—normally the entire population—and then filtering the pool on the basis of
performance on individual fitness cases, considered one at a time (Spector, 2012).

The 6-multiplexer problem is the standard boolean multiplexer problem used in
(Koza, 1992) and in many subsequent studies by many authors.

In our experiments, we used the PushGP parameters listed in Table 4. We made
an effort to use similar parameters to previous work on these problems where pos-
sible. We used unbiased node selection for all subtree replacement operators. In

2 http://personal.disco.unimib.it/Vanneschi/bioavailability.txt

Pagie-1 Results

Uniform Linear Transformation with Repair and Alternation in Genetic Programming 9

Fig. 2 Program sizes for the
bioavailability problem.

0

100

200

300

400

500

0 25 50 75 100
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

81/9/10

45/45/10

ULTRA

Table 3 Results on the Pagie-1 problem. We conducted 100 runs for each choice of operators.
MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors over
test cases, not the summed errors.

Operators Successes MBF
Subtree Replacement 80/10/10 0 0.363
Subtree Replacement 45/45/10 0 0.319
ULTRA 15 0.036

models of the training data than subtree replacement without running into problems
of overfitting the data, which would lead to worse performance on the test set.

The mean program sizes with respect to evolutionary time are plotted in Figure 2.
The runs using subtree replacement show steady growth in program sizes, whereas
those using ULTRA quickly fall at the beginning of the run and then remain rela-
tively steady. The lower program sizes of ULTRA runs may contribute to its ability
to not overfit the data.

Table 3 presents the results of our experiments on the Pagie-1 problem. PushGP
using ULTRA found perfect solutions in 15 out of 100 runs, whereas runs with
subtree replacement found none with either parameter setting. The difference in
MBF between subtree replacement 80/10/10 and ULTRA, as well as subtree re-
placement 45/45/10 and ULTRA, is statistically significant based on an unpaired
t-test at p = 0.01. Note that the results for subtree replacement 45/45/10 are only

over 98 runs, with data from 2 runs yet to come.

The mean program sizes in our Pagie-1 experiments are given in Figure 3. Runs
using subtree replacement experienced quick code growth, reaching mean sizes near
the maximum program size of 500 within the first 50 generations. After this point,
it is difficult for the genetic operators to make changes to large programs without
exceeding the program size limit. On the other hand, the mean program sizes of
ULTRA runs quickly drop to around size 50, and then climb to approach 100. In
these runs, it is unlikely that many genetic operations will exceed the size limit.

Pagie-1 Sizes10 Lee Spector and Thomas Helmuth

Fig. 3 Program sizes for the
Pagie-1 problem.

0

100

200

300

400

500

0 250 500 750 1000
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

80/10/10

45/45/10

ULTRA

Table 4 Results on the factorial problem for 100 runs in each condition. CE is computational effort
and MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors
over test cases, not the summed errors.

Operators Successes CE MBF
Subtree Replacement 45/45/10 32 4,325,000 1.17
ULTRA 58 2,760,000 0.41

Fig. 4 Program sizes from
factorial problem.

0

100

200

300

400

500

0 100 200 300 400 500
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

45/45/10

ULTRA

Figure 4 presents the results from our experiments using the factorial problem.
ULTRA had better success rate and computational effort. The difference between
the MBF subtree replacement 45/45/10 and ULTRA is statistically significant based
on an unpaired t-test at p = 0.01

Mean program sizes from throughout the factorial problem runs are presented in
Figure 4. The runs using ULTRA maintained a relatively constant mean program

Factorial
• Integer symbolic regression

• 5 cases ranging from 1! = 1 to 5! = 120

• Parentheses are semantically relevant

• in, and, dup, eq, frominteger, not, or, pop,
rot, swap, add, div, dup, eq, fromboolean,
gt, lt, mod, mult, pop, rot, sub, swap, if,
k, noop, pop, rot, s, swap, when, y

• Lexicase selection instead of tournament
selection, because error magnitudes vary
significantly across cases

Lexicase Selection
• Each parent is selected by filtering the entire

population, one one case at a time (in random
order), keeping only the elite at each stage
(Spector, 2012)

• Useful for “modal” problems, which require
qualitatively different responses to different
inputs

• All comparisons are “within case,” so may be
useful whenever cases are non-comparable

Factorial Results

10 Lee Spector and Thomas Helmuth

Fig. 3 Program sizes for the
Pagie-1 problem.

0

100

200

300

400

500

0 250 500 750 1000
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

80/10/10

45/45/10

ULTRA

Table 4 Results on the factorial problem for 100 runs in each condition. CE is computational effort
and MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors
over test cases, not the summed errors.

Operators Successes CE MBF
Subtree Replacement 45/45/10 32 4,325,000 1.17
ULTRA 58 2,760,000 0.41

Fig. 4 Program sizes from
factorial problem.

0

100

200

300

400

500

0 100 200 300 400 500
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

45/45/10

ULTRA

Figure 4 presents the results from our experiments using the factorial problem.
ULTRA had better success rate and computational effort. The difference between
the MBF subtree replacement 45/45/10 and ULTRA is statistically significant based
on an unpaired t-test at p = 0.01

Mean program sizes from throughout the factorial problem runs are presented in
Figure 4. The runs using ULTRA maintained a relatively constant mean program

Factorial Sizes

10 Lee Spector and Thomas Helmuth

Fig. 3 Program sizes for the
Pagie-1 problem.

0

100

200

300

400

500

0 250 500 750 1000
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

80/10/10

45/45/10

ULTRA

Table 4 Results on the factorial problem for 100 runs in each condition. CE is computational effort
and MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors
over test cases, not the summed errors.

Operators Successes CE MBF
Subtree Replacement 45/45/10 32 4,325,000 1.17
ULTRA 58 2,760,000 0.41

Fig. 4 Program sizes from
factorial problem.

0

100

200

300

400

500

0 100 200 300 400 500
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

45/45/10

ULTRA

Figure 4 presents the results from our experiments using the factorial problem.
ULTRA had better success rate and computational effort. The difference between
the MBF subtree replacement 45/45/10 and ULTRA is statistically significant based
on an unpaired t-test at p = 0.01

Mean program sizes from throughout the factorial problem runs are presented in
Figure 4. The runs using ULTRA maintained a relatively constant mean program

6-Multiplexer

• Standard Boolean 6-multiplexer problem
from (Koza, 1992)

• a0, a1, d0, d1, d2, d3, if, and, or, not

6-Multiplexer Results
Uniform Linear Transformation with Repair and Alternation in Genetic Programming 11

Table 5 Results on the 6-multiplexer problem, with 100 runs in each condition. CE is computa-
tional effort and MBF is the mean best fitness of the run.

Operators Successes CE MBF
Subtree Replacement 80/10/10 85 135,000 0.009
ULTRA 66 356,000 0.036

Fig. 5 Program sizes from
MUX6 problem.

0

50

100

150

200

0 50 100 150 200
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

80/10/10

ULTRA

size, while runs using subtree replacement 45/45/10 show very fast code growth
over the first 100 generations, followed by stable sizes near the maximum program
size of 500.

Table 5 presents results from our experiments on the 6-multiplexer problem. Un-
like any other problem presented here, subtree replacement performs better than
ULTRA on all measurements of problem-solving performance, although ULTRA
does produce solutions much smaller programs overall. The difference between the
MBF subtree replacement 80/10/10 and ULTRA is statistically significant based on
an unpaired t-test at p = 0.01

Program sizes from the MUX6 problem are presented in Figure 5. As with our
other program sizes figures, subtree replacement runs tend to bloat from the start
where ULTRA runs tend to decrease program size rapidly and then level off.

6 Discussion and Future Work

The results presented here demonstrate that ULTRA, a new genetic operator that
prioritizes uniformity and incorporates features traditionally associated both with
mutation and crossover, can be an effective tool in helping genetic programming to
solve difficult programs and to manage program sizes over the evolutionary process.

The results on the drug bioavailability and Pagie-1 problems, which are difficult
floating-point symbolic regression problems acknowledged in the field to be useful

6-Multiplexer Sizes

Uniform Linear Transformation with Repair and Alternation in Genetic Programming 11

Table 5 Results on the 6-multiplexer problem, with 100 runs in each condition. CE is computa-
tional effort and MBF is the mean best fitness of the run.

Operators Successes CE MBF
Subtree Replacement 80/10/10 85 135,000 0.009
ULTRA 66 356,000 0.036

Fig. 5 Program sizes from
MUX6 problem.

0

50

100

150

200

0 50 100 150 200
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

80/10/10

ULTRA

size, while runs using subtree replacement 45/45/10 show very fast code growth
over the first 100 generations, followed by stable sizes near the maximum program
size of 500.

Table 5 presents results from our experiments on the 6-multiplexer problem. Un-
like any other problem presented here, subtree replacement performs better than
ULTRA on all measurements of problem-solving performance, although ULTRA
does produce solutions much smaller programs overall. The difference between the
MBF subtree replacement 80/10/10 and ULTRA is statistically significant based on
an unpaired t-test at p = 0.01

Program sizes from the MUX6 problem are presented in Figure 5. As with our
other program sizes figures, subtree replacement runs tend to bloat from the start
where ULTRA runs tend to decrease program size rapidly and then level off.

6 Discussion and Future Work

The results presented here demonstrate that ULTRA, a new genetic operator that
prioritizes uniformity and incorporates features traditionally associated both with
mutation and crossover, can be an effective tool in helping genetic programming to
solve difficult programs and to manage program sizes over the evolutionary process.

The results on the drug bioavailability and Pagie-1 problems, which are difficult
floating-point symbolic regression problems acknowledged in the field to be useful

Program SizesUniform Linear Transformation with Repair and Alternation in Genetic Programming 9

Fig. 2 Program sizes for the
bioavailability problem.

0

100

200

300

400

500

0 25 50 75 100
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

81/9/10

45/45/10

ULTRA

Table 3 Results on the Pagie-1 problem. We conducted 100 runs for each choice of operators.
MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors over
test cases, not the summed errors.

Operators Successes MBF
Subtree Replacement 80/10/10 0 0.363
Subtree Replacement 45/45/10 0 0.319
ULTRA 15 0.036

models of the training data than subtree replacement without running into problems
of overfitting the data, which would lead to worse performance on the test set.

The mean program sizes with respect to evolutionary time are plotted in Figure 2.
The runs using subtree replacement show steady growth in program sizes, whereas
those using ULTRA quickly fall at the beginning of the run and then remain rela-
tively steady. The lower program sizes of ULTRA runs may contribute to its ability
to not overfit the data.

Table 3 presents the results of our experiments on the Pagie-1 problem. PushGP
using ULTRA found perfect solutions in 15 out of 100 runs, whereas runs with
subtree replacement found none with either parameter setting. The difference in
MBF between subtree replacement 80/10/10 and ULTRA, as well as subtree re-
placement 45/45/10 and ULTRA, is statistically significant based on an unpaired
t-test at p = 0.01. Note that the results for subtree replacement 45/45/10 are only

over 98 runs, with data from 2 runs yet to come.

The mean program sizes in our Pagie-1 experiments are given in Figure 3. Runs
using subtree replacement experienced quick code growth, reaching mean sizes near
the maximum program size of 500 within the first 50 generations. After this point,
it is difficult for the genetic operators to make changes to large programs without
exceeding the program size limit. On the other hand, the mean program sizes of
ULTRA runs quickly drop to around size 50, and then climb to approach 100. In
these runs, it is unlikely that many genetic operations will exceed the size limit.

Bioavailability

10 Lee Spector and Thomas Helmuth

Fig. 3 Program sizes for the
Pagie-1 problem.

0

100

200

300

400

500

0 250 500 750 1000
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

80/10/10

45/45/10

ULTRA

Table 4 Results on the factorial problem for 100 runs in each condition. CE is computational effort
and MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors
over test cases, not the summed errors.

Operators Successes CE MBF
Subtree Replacement 45/45/10 32 4,325,000 1.17
ULTRA 58 2,760,000 0.41

Fig. 4 Program sizes from
factorial problem.

0

100

200

300

400

500

0 100 200 300 400 500
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

45/45/10

ULTRA

Figure 4 presents the results from our experiments using the factorial problem.
ULTRA had better success rate and computational effort. The difference between
the MBF subtree replacement 45/45/10 and ULTRA is statistically significant based
on an unpaired t-test at p = 0.01

Mean program sizes from throughout the factorial problem runs are presented in
Figure 4. The runs using ULTRA maintained a relatively constant mean program

Pagie-1

10 Lee Spector and Thomas Helmuth

Fig. 3 Program sizes for the
Pagie-1 problem.

0

100

200

300

400

500

0 250 500 750 1000
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

80/10/10

45/45/10

ULTRA

Table 4 Results on the factorial problem for 100 runs in each condition. CE is computational effort
and MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors
over test cases, not the summed errors.

Operators Successes CE MBF
Subtree Replacement 45/45/10 32 4,325,000 1.17
ULTRA 58 2,760,000 0.41

Fig. 4 Program sizes from
factorial problem.

0

100

200

300

400

500

0 100 200 300 400 500
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

45/45/10

ULTRA

Figure 4 presents the results from our experiments using the factorial problem.
ULTRA had better success rate and computational effort. The difference between
the MBF subtree replacement 45/45/10 and ULTRA is statistically significant based
on an unpaired t-test at p = 0.01

Mean program sizes from throughout the factorial problem runs are presented in
Figure 4. The runs using ULTRA maintained a relatively constant mean program

Factorial

Uniform Linear Transformation with Repair and Alternation in Genetic Programming 11

Table 5 Results on the 6-multiplexer problem, with 100 runs in each condition. CE is computa-
tional effort and MBF is the mean best fitness of the run.

Operators Successes CE MBF
Subtree Replacement 80/10/10 85 135,000 0.009
ULTRA 66 356,000 0.036

Fig. 5 Program sizes from
MUX6 problem.

0

50

100

150

200

0 50 100 150 200
Generation

M
e
a
n
 P

ro
g
ra

m
 S

iz
e

80/10/10

ULTRA

size, while runs using subtree replacement 45/45/10 show very fast code growth
over the first 100 generations, followed by stable sizes near the maximum program
size of 500.

Table 5 presents results from our experiments on the 6-multiplexer problem. Un-
like any other problem presented here, subtree replacement performs better than
ULTRA on all measurements of problem-solving performance, although ULTRA
does produce solutions much smaller programs overall. The difference between the
MBF subtree replacement 80/10/10 and ULTRA is statistically significant based on
an unpaired t-test at p = 0.01

Program sizes from the MUX6 problem are presented in Figure 5. As with our
other program sizes figures, subtree replacement runs tend to bloat from the start
where ULTRA runs tend to decrease program size rapidly and then level off.

6 Discussion and Future Work

The results presented here demonstrate that ULTRA, a new genetic operator that
prioritizes uniformity and incorporates features traditionally associated both with
mutation and crossover, can be an effective tool in helping genetic programming to
solve difficult programs and to manage program sizes over the evolutionary process.

The results on the drug bioavailability and Pagie-1 problems, which are difficult
floating-point symbolic regression problems acknowledged in the field to be useful

6-Multiplexer

Conclusions
• Genetic operators that are in some senses “uniform”

may perform much better than standard genetic
operators in GP

• ULTRA provides an approach to ≈uniform operators
based on linearization, alternation, and repair

• ULTRA is easy to implement for PushGP and
produces significant improvements in problem solving
power and size control

• With somewhat more effort ULTRA should be
applicable to other program representations

Digital Multiplier

Table 5: Results on the 2-bit digital multiplier prob-
lem. Each condition used 100 runs. CE is the
computational e↵ort and MBF is the mean best fit-
ness of the run. The last column gives 2-tailed p-
values from unpaired t-tests that examine whether
the MBF di↵ers from that of lexicase + ULTRA,
shown in the last row of the table.
Condition Successes CE MBF p-value
Normal 12 6,893,000 0.144 < 0.001
Lexicase 90 595,000 0.006 0.005
ULTRA 57 2,440,000 0.056 < 0.001
Lex+ULTRA 99 192,000 0.0006 -

iments can be found in Table 2. In our runs, we used either
tournament selection with tournament size 7 or lexicase se-
lection. For genetic operators, we either used the “normal”
genetic operators with the probabilities in Table 3, or UL-
TRA with the parameters found in Table 4. For program
initialization, we created random programs with sizes uni-
formly chosen between 1 and the max initial program size
found in Table 2. We conducted sets of runs using four dif-
ferent parameter conditions: normal (tournament selection
and normal genetic operators), lexicase (with normal genetic
operators), ULTRA (with tournament selection), and lexi-
case + ULTRA.

In order to test the performance of each condition, we
measured the success rate, computational e↵ort, and the
mean best fitness for each set of runs. Mean best fitness is
the mean of the best individual fitnesses attained in each
run. For all runs described here, fitness is defined as a mea-
sure of error with lower numbers being better and solutions
having fitness values of zero. The fitnesses given here are the
mean errors across test cases, not the sums of those errors.
As recommended in [6, 7], we conducted t-tests comparing
the mean best fitnesses of each condition with the best set
of runs.

We also present the success rate and computational e↵ort
of each run. The success rate is the number of runs that
find a perfect solution. Computational e↵ort measures the
expected number of individuals that the genetic program-
ming algorithm needs to evaluate in order to have a 99%
confidence of finding a solution. A lower computational ef-
fort means that fewer fitness evaluations have to be made in
order to find a solution. Computational e↵ort was computed
as described by Koza [4, pp. 99–103]: We first calculate
P (M, i), the cumulative probability of success by genera-
tion i with population size M ; this is the number of runs
that succeeded on or before the ith generation, divided by
the number of runs conducted. I(M, i, z), the number of
individuals that must be processed to produce a solution by
generation i with probability greater than z (here z = 99%)
is then calculated as:

I(M, i, z) = M ⇤ (i+ 1) ⇤
⇠

log(1� z)
log(1� P (M, i))

⇡

The minimum of I(M, i, z) over all generation values of i is
defined to be the“computational e↵ort”required to solve the
problem. The measures of success rate and computational
e↵ort give an idea as to how e�cient the algorithm is at
finding full solutions to a problem.

The results of our runs on the 2-bit digital multiplier prob-

Table 6: Results on the 3-bit digital multiplier prob-
lem. Each condition used 100 runs. MBF is the
mean best fitness of the run. No runs found per-
fect solutions. The last column gives 2-tailed p-
values from unpaired t-tests that examine whether
the MBF di↵ers from that of lexicase + ULTRA,
shown in the last row of the table.

Condition MBF p-value
Normal 0.89 < 0.001
Lexicase 0.39 < 0.001
ULTRA 0.53 < 0.001
Lex+ULTRA 0.12 -

lem can be found in Table 5. Using both lexicase selection
and ULTRA resulted in the best performance, which found
100% correct programs in almost every run. The computa-
tional e↵ort for lexicase + ULTRA is much lower than with
lexicase selection only, ULTRA only, or neither. The mean
best fitness of the lexicase + ULTRA runs is better than
any of the other conditions. We conducted unpaired t-tests
between the lexicase + ULTRA runs and all other condi-
tions’ mean best fitnesses, and found the di↵erences to be
significant at the 0.01 level each time.
Table 6 presents the results of our runs on the 3-bit digital

multiplier problem. In this case, no runs found perfect so-
lutions, so we do not report solution rates or computational
e↵ort. Lexicase + ULTRA produced the best mean best
fitness, with the di↵erences between it and the other runs
significant at the 0.01 level. We did conduct a small set
of runs on the 3-bit problem using a larger population size
(5000) and larger max generations (4000). Many of these
runs did find perfect solutions, but we were unable to per-
form enough runs with these larger parameters to produce
meaningful results in the time that we had available prior
to the deadline for this paper.

7. DISCUSSION
Based on our results, both lexicase selection and ULTRA

significantly improve the performance of PushGP on the dig-
ital multiplier problem. Let us consider each of their e↵ects
and why they may improve performance.
Lexicase selection puts equal pressure on solving each test

case, which in turn makes it helpful on “modal” problems
where di↵erent test cases require qualitatively di↵erent ac-
tions to solve them [11]. In the digital multiplier problem,
some output bits should return False in almost every test
case. For example, in 2-bit digital multiplier, the first bit
is False in every test case besides when both binary inputs
represent the number 3, in which case it is True. So, a
program can achieve near-perfect fitness on the first bit by
simply outputting False for it in every test case. Using nor-
mal summed-error fitness with a selection method such as
tournament selection, a program can essentially ignore this
first bit and get a fitness of 1 by just solving the other three
bits perfectly. This leads evolution into a local optimum,
where it is di�cult to solve the 3 times 3 test case without
disrupting another test case more significantly.
Lexicase selection avoids this problem by putting equal

selection pressure on solving each test case. Programs that
correctly compute the first bit of the 3 times 3 test case
perfectly will be selected for when that test case is near the

Future Directions

• ULTRA with tree-based GP (Lisp-style
symbolic expressions)

• ULTRA with grammatical evolution, cartesian
genetic programming, and other GP
representations

• Analysis and manipulation of uniformity
properties

• Experimentation with ULTRA parameters

