ULTRA!

Uniform Linear Transformation with Repair
and Alternation in Genetic Programming

Lee Spector (*, +)
Thomas Helmuth (+)
* Cognitive Science, Hampshire College
+ Computer Science, UMass Amherst

Qutline

Uniformity
The ULTRA genetic operator
Push

Problems

Results

Uniformity

Conversation with Evelyn Fox Keller

Interactions between genome size, expression,
functionality, gene competition, etc. in traditional
GP; e.g. bloat from protection against crossover

“But why would you do it that way?”

Biological genetic variation, while not fully uniform,
has uniformity properties that prevent some of the
problems we see in GP

Uniform Variation

® All genetic material that a child inherits
should be = likely to be mutated

® Parts of both parents should be = likely to

appear in children (at least if they are = in
size), and to appear in a range of
combinations

® Should be applicable to genomes of varying
size and structure

Why Uniformity?

® No hiding from mutation

® All parts of parents subject to variation and
recombination

Prior Work

® Point mutations or “uniform crossovers’ that
replace/swap nodes but only in restricted ways;
cannot change structure, has depth biases
(McKay et al, 1995; Page et al, 1998; Poli and
Langdon, 1998; Poli and Page, 2000; Semenkin and
Semenkina, 2012)

e Uniform mutation via size-based numbers of tree
replacements; depth biases, little demonstrated
benefit (McKay et al, 1995;Van Belle and Ackley,
2002)

Why it’s hard in GP

® Genomes are programs that have structure

® “Parts” of programs contain other parts!

Why = ?

® Sequences and positions often matter, and
many of the obvious ways to fully satisfy the
stated uniformity criteria would not retain
them

® Not clear that full uniformity is what one
wants when parents have very different sizes

ULTRA

® Achieve uniformity by treating genomes as
linear sequences, even if they are
hierarchically structured

® Repair after transform to ensure structural
validity

Push

Stack-based postfix language with one stack per type

Types include: integer, float, Boolean, name, code,

exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument? NOOP

Minimal syntax:
program — instruction | literal | (program™)

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,

instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =

Ma’th _|_7) /7 x, >7 <7

(INTEGER and FLOAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,

(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT

Control manipulation | DO*, DO*COUNT, DO*RANGE,

(CODE and EXEC) DO*TIMES, IF

Push(3) Semantics

e '[o execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E':

(a) If F is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(23 INTEGER* 4.1 5.2 (23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE FLOAT.+ TRUE FALSE
BOOLEAN.OR) BOOLEAN.OR)

exec code bool int float

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

5.2
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1

float

FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

52

4.1

float

TRUE

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 6 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

(23 INTEGER * 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

Why Push?

® Many reasons!
® But one good reason to use it here is:

® Push programs can be hierarchically structured,
but every push program is structurally valid if
its parentheses are balanced

® This makes the Repair step of ULTRA, which
we will see shortly, particularly simple

® But note that ULTRA can also be applied to other
GP representations

Why Push (Elsewhere)?

® Highly expressive: data types, data
structures, variables, conditionals, loops,
recursion, modules, ...

® FElegant: minimal syntax and a simple, stack-
based execution architecture

® Evolvable
® Extensible

® Supports several forms of meta-evolution

ULTRA

® Achieve uniformity by treating genomes as
linear sequences, even if they are
hierarchically structured

® Repair after transform to ensure structural
validity

ULTRA Algorithm

Linearize two parents

Alternate according to alternation rate,
subject to alignment deviation

Uniformly mutate, subject to mutation rate

Repair

Parents:
(ab(c (d))e (fg))
(1 (2 (34)5)6)

Result of alternation:

(ab2 (34d)) 6)

Result of repair:

(a (b2 (34d))6)

Problems

Bioavailability
Pagie- |
Factorial

6-Multiplexer

Parameters

Problem Bioavailability |Pagie-1 |Factorial MUX6
Runs Per Condition 200 100 100 100
Population Size 500(1000 1000 500
Max Generations 100{ 1000 500 200
Max Program Size 500 500 500 200
Max Inital Program Size 500 500 100 200
Max Size for Mutation Code 50 50 20 20
Parent Selection Tournament Size 7 7|Lexicase 7
Problem Bioavailability, Pagie-1, MUX6|Factorial
ULTRA Mutation Rate 0.01 0.05
ULTRA Alternation Rate 0.01 0.05
ULTRA Alignment Deviation 10 10

Bioavailability
Floating-point predictive modeling

Programs must predict the human oral
bioavailability of a set of drug compounds
given their molecular structure (Silva and

Vanneschi, 2009, 2010)

241 floating point inputs, | floating point
output, add, sub,mult,div

Training: 707% of cases; Testing: 30% of cases

Dataset is available online

Bioavailability Results

70 70
[]
H
[
[]
¢ []
60 60 - .
[]
[
¢h 50 - L 50 - X
= =
o c
[-—
-a 8
= ~
[]
40 - . 40 -
30 - 30 -

I 1 I I 1 1
81/9/10 45/45/10 ULTRA 81/9/10 45/45/10 ULTRA

Bioavailability Sizes

500

400 -

(O]
N
¥ 300 -
&
© -@- 81/9/10
(@)
o - 45/45/10
(al
c - ULTRA
« 200 -
(]
=

100 -

0 I I I
0 25 50 75 100

Generation

Pagie- |

Symbolic regression (Pagie and Hogeweg, 1997)

Fly) = :

X = |

T) T 0y

Inputs for x and y taken uniformly from the
range [—5, 5] in steps of 0.4, resulting in 676

fithess cases.

X,y,add, sub,mult,div

Used and recommended for GP benchmarking
(Harper, 2012; McDermott et al, 2012;White et
al, 2013)

Pagie-1 Results

Operators Successes| MBF
Subtree Replacement 80/10/10 0[{0.363
Subtree Replacement 45/45/10 0{0.319
ULTRA 15(0.036

Pagie- | Sizes

500

400 -
(O]
N
W 300 -
e
© -@- 80/10/10
(@)
o -A- 45/45/10
o
c & ULTRA
« 200 -
(O]
]

100 -

0 I I I
0 250 500 750 1000

Generation

Factorial

Integer symbolic regression
5 cases ranging from ! =1 to 5! = 120
Parentheses are semantically relevant

in, and, dup, eq, frominteger, not, or, pop,
rot, swap, add, div, dup, eq, fromboolean,
gt, 1lt, mod, mult, pop, rot, sub, swap, 1if,
k, noop, pop, rot, s, swap, when, y

Lexicase selection instead of tournament
selection, because error magnitudes vary
significantly across cases

Lexicase Selection

® Fach parent is selected by filtering the entire
population, one one case at a time (in random

order), keeping only the elite at each stage
(Spector, 2012)

® Useful for “modal” problems, which require
qualitatively different responses to different
Inputs

® All comparisons are “within case,” so may be
useful whenever cases are non-comparable

Factorial Results

Operators Successes CE|MBF

Subtree Replacement 45/45/10 32(4,325,000(1.17
ULTRA 5812,760,000| 0.41

Factorial Sizes

500
400 -
()]
N
W 300 -
e
©
(@)]
o -®- 45/45/10
o
c -A- ULTRA
« 200 -
()]
=
100 -
0

| | | |
0 100 200 300 400 500
Generation

6-Multiplexer

® Standard Boolean 6-multiplexer problem
from (Koza, 1992)

® a0,al,d0,dl1,d2,d3,if, and, or, not

6-Multiplexer Results

Operators Successes CE| MBF
Subtree Replacement 80/10/10 85(135,000(0.009
ULTRA 66|356,000(0.036

6-Multiplexer Sizes

Mean Program Size

200

150 -

—_

o

o
|

-@- 80/10/10
-~ ULTRA

50

|
100
Generation

I
150

200

Program Sizes

500 -

400
8
@ 300 4
IS
% -8 81/9/10
ne_ A 45/45/10
< 500 - = ULTRA
[
=

100

0+ T T T 1
0 25 50 75 100
Generation
Bioavailability

500

400
S
9 300
€
©
>
<) -®- 45/45/10
% -A- ULTRA
@ 200 4
(9]
=

100

0 T T T T 1
0 100 200 300 400 500
Generation
Factorial

500

400

1ze

300~

Mean Program S
2
1

100

-8~ 80/10/10
-A- 45/45/10
- ULTRA

200 -

150 -

Mean Program Size
S
o

50-

T
250 500
Generation

Pagie- |

1 1
50 100
Generation

6-Multiplexer

T
750

1
150

1000

-8~ 80/10/10
A= ULTRA

1
200

Conclusions

Genetic operators that are in some senses “uniform”
may perform much better than standard genetic
operators in GP

ULTRA provides an approach to =uniform operators
vased on linearization, alternation, and repair

ULTRA is easy to implement for PushGP and
broduces significant improvements in problem solving
bower and size control

With somewhat more effort ULTRA should be
applicable to other program representations

Digital Multiplier

Table 5: Results on the 2-bit digital multiplier prob-
lem. Each condition used 100 runs. CE is the
computational effort and MBF is the mean best fit-
ness of the run. The last column gives 2-tailed p-
values from unpaired t-tests that examine whether
the MBF differs from that of lexicase + ULTRA,
shown in the last row of the table.

Condition Successes CE | MBF | p-value
Normal 12 | 6,893,000 | 0.144 | < 0.001
Lexicase 90 595,000 | 0.006 0.005
ULTRA 57 | 2,440,000 | 0.056 | < 0.001
Lex+ULTRA 99 192,000 | 0.0006 -

Future Directions

ULTRA with tree-based GP (Lisp-style
symbolic expressions)

ULTRA with grammatical evolution, cartesian
genetic programming, and other GP
representations

Analysis and manipulation of uniformity
properties

Experimentation with ULTRA parameters

