
General Program Synthesis Benchmark Suite

Thomas Helmuth
Lee Spector

Hampshire College & University of Massachusetts, Amherst

Outline

• Motivation

• Software synthesis benchmark suite

• Illustrative experiment

• Conclusions

Motivation

• Demand for benchmarks in GP more generally

• General program synthesis (automatic programming) is a
long-standing goal of the field

• Few existing benchmarks for general program synthesis

• Purpose: help researchers assess the ability of a system
to automate human programming

Tests

Software

Desiderata

• A program synthesis benchmark suite should require:

• Multiple data types and data structures

• Control flow

• Large instruction sets

• Larger programs than can be found by brute force

Sources

• iJava: an interactive introductory computer science text-
book with automatically graded programming problems
[Moll]

• IntroClass: a dataset designed for benchmarking
automatic software defect repair systems [Le Goues,
Holtschulte, Smith, Brun, Devanbu, Forrest, Weimer]

Criteria

• A range of inputs that have known correct outputs

• Present challenges typical of real programming tasks

• Agnostic with respect to programming language and
synthesis technique

29 Synthesis Benchmarks
• From iJava: Number IO, Small or Large, For Loop Index,

Compare String Lengths, Double Letters, Collatz Numbers,
Replace Space with Newline, String Differences, Even
Squares, Wallis Pi, String Lengths Backwards, Last Index of
Zero, Vector Average, Count Odds, Mirror Image, Super
Anagrams, Sum of Squares, Vectors Summed, X-Word Lines,
Pig Latin, Negative to Zero, Scrabble Score, Word Stats

• From IntroClass: Checksum, Digits, Grade, Median, Smallest,
Syllables

• PushGP has solved all of these except for the ones in blue

Using the Suite

• Seek success (passing all tests in training set)

• Seek generalization (passing all tests in test set)

• Seek high rates of success

• Use program evaluation limits

• Be reasonable about language feature and synthesis
technique differences; it will not be possible to make
comparisons that are "fair" in all ways

Push
• Designed for program evolution

• Data flows via stacks, not syntax

• One stack per type:  
integer, float, boolean, string, code, exec, vector, ...

• Rich data and control structures

• Minimal syntax:  
program → instruction | literal | (program*)

• Uniform variation, meta-evolution

Plush

integer_eq exec_dup char_swap integer_add exec_if

2 0 0 0 1

1 0 0 1 0

Instruction
Close?

Silence?

Selection

• In genetic programming, selection is typically based on
average performance across all test cases (sometimes
weighted, e.g. with "implicit fitness sharing")

• In nature, selection is typically based on sequences of
interactions with the environment

Lexicase Selection

• Emphasizes individual test cases and combinations of
test cases; not aggregated fitness across test cases

• Random ordering of test cases for each selection event

Lexicase Selection
To select single parent:

1. Shuffle test cases

2. First test case – keep best individuals

3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist in the tests that
happen to have come first, and may or may not be
particularly good on average

Implicit Fitness Sharing

• Scale errors per case based on population-wide error

• Non-binary version

• All successes shown 
here generalize across 
the testing set

• Many non-generalizing 
"solutions" were also 
found

Results and Metaresults

• Benchmarks representative of novice programming tasks

• Benchmarks range in difficulty

• PushGP can solve many of them

• Lexicase selection often helps substantially

Conclusions

• GP can now automate some human programming

• Proposed benchmarks can guide and assess progress

• Full details in technical report:  
https://web.cs.umass.edu/publication/details.php?id=2387

• Data:  
https://github.com/thelmuth/Program-Synthesis-Benchmark-Data

• Coming soon: Tom Helmuth's dissertation!

https://web.cs.umass.edu/publication/details.php?id=2387
https://github.com/thelmuth/Program-Synthesis-Benchmark-Data

Thanks

• Members of the Hampshire College Computational
Intelligence Lab.

• This material is based upon work supported by the
National Science Foundation under Grants No. 1017817,
1129139, and 1331283. Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

