Hot Off the Press!

Solving Uncompromising Problems
with Lexicase Selection

in IEEE Transactions on Evolutionary Computation

Thomas Helmuth, Lee Spector, and James Matheson
Hampshire College & University of Massachusetts, Amherst

GECCOl}\\\

Qutline

Lexicase selection

Modal and uncompromising problems
Four problems

Experimental results

Conclusions

Selection

* In genetic programming, selection is typically based on
average performance across all test cases (sometimes
weighted, e.g. with "implicit fitness sharing")

* In nature, selection is typically based on sequences of
interactions with the environment

| exicase Selection

 Emphasizes individual test cases and combinations of

test cases; not aggregated fithess across test cases

- Random ordering of test cases for each selection event

- Can DRAMATICALLY enhance the power of genetic

programming to solve problems

| exicase Selection

To select single parent:
|. Shuffle test cases
2. First test case — keep best individuals
3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist in the tests that
happen to have come first,and may or may not be
particularly good on average

Modal Problems

* Require successful programs to do something
qualitatively different in different circumstances

- “Circumstances” vary across fithess cases

* How many modes? How are they detected? May not be
obvious in advance

+ Many software design problems (among others) are
modal

SPL-110

Uncompromising Problems

» Any acceptable solution must perform as well on each
test case as it is possible to perform on that test case

- Not acceptable for a solution to perform sub-optimally
on any one test case in exchange for good performance
on others

+ Many software design problems (among others) are
uncompromising

Potential

Not only for modal or uncompromising problems
Other uses of selection in genetic programming

Other forms of evolutionary computation with case-like
assessment

More to be done, e.g. for problems with continuous
errors

Related Work

» Multi-objective evolution (generally assumes objectives,
which may not be factored by input, are known in
advance)

» Multi-modal problems (generally refers to problems with
multiple global optima)

» Lexicographic ordering in selection (but here we order
fitness cases, in random order)

- Ensemble methods (but here we seek a single program
perhaps with some code used for multiple modes)

Experiments

* Problems

» Finding discriminator terms in finite algebras

» Designing digital multipliers

+ Symbolic regression of the factorial function

» Automatic programming of "wc" (word count)

+ Genetic programming systems

+ Koza-style tree-based GP
* PushGP

« Selection

* Lexicase
+ Tournament (various sizes)
» Implicit Fitness Sharing (various tournament sizes)

Finite Algebras

Digital Multiplier

« 3 bits x 3 bits => 6 bits

A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE
ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, zor, invertFirstThenAnd,
dup, swap, rot

Input/Output inl, ..., in2n, outl, ..., out2n

Factorial

Inputs |!=1 to 10!=3628800

Various forms of normalization for non-lexicase methods

Instructions for integers, booleans, execution stack (for
conditional branches and recursion)

No high-level Push instructions that allow for trivial
solutions

WC

® OO0 L] WC — bash — 80x40

WC Swe wc.tex
449 8105 55491 wc.tex

WC $

newlines
words

characters

wc Test Cases

* 0 to 100 character files

* Random string (200 training, 500 test)
* Random string ending in newline (20 training, 50 test)

 Edge cases (22; empty string, multiple newlines, etc.)

Instructions

General purpose
/O

Control flow

Tags for modularity

String, integer, and boolean

Random constants

Input file_readchar, file_readline, file_-
EOF, file_begin

Output output_charcount, output_wordcount,
output_linecount

Exec exec_pop, exec_swap, exec_rot,

exec_dup, exec_yank, exec_yankdup,
exec_shove, exec_eq, exec_stack-
depth, exec_when, exec_if, exec_-
do*times, exec_do*count, exec_-
do*range, exec_y, exec_k, exec_s

Tag ERCs

tag_exec, tag_integer, tag _string,
tagged

String

string_split, string _parse_to_chars,
string_whitespace, string_contained,
string_reverse, string_concat,
string_take, string pop, string -
eq, string_stackdepth, string_rot,
string_yank, string_swap, string -
yankdup, string_flush, string -
length, string_shove, string_dup

Integer

integer_add, integer_swap, integer_-
yank, integer_dup, integer_yankdup,
integer_shove, integer_mult, inte-
ger_div, integer_max, integer_sub,
integer_mod, integer_rot, integer_-
min, integer_inc, integer_dec

Boolean

boolean_swap, boolean_and, boolean_-
not, boolean_or, boolean_frominte-
ger, boolean_stackdepth, boolean_dup

ERC

Integer from [-100, 100|
{u\nn. "\t". uu- }
{z|x is a non-whitespace character}

Implicit Fitness Sharing

» Scale errors per case based on population-wide error

* Non-binary version

Push

Designed for program evolution
Data flows via stacks, not syntax

One stack per type:
integer, float, boolean, string, code, exec, vector, ...

Rich data and control structures

Minimal syntax:
program — instruction | literal | (program™)

Uniform variation, meta-evolution

Parameters

Problem FA DM Fact wCe
System Tree Push Push Push
Runs Per Condition 100 100 100 200
Number of Test Cases 27 64 10 242
Population Size 1000 5000 1000 1000
Max Generations 100 4000 500 300
Max Program Size 1000 1000 500 1000
Max Initial Program Size - 400 100 400
Expected Initial Program Size 50 - - -
Max Initial Program Depth 20 - - -
Expected Mutation Code Size 10 - - -
Max Mutation Code Depth 10 - - -
Max Instructions Executed - 1000 1000 2000
Crossover Probability 50% 0% 0% 0%
Mutation Probability 50% 0% 0% 0%
ULTRA Probability 0% 100% 100% 100%
ULTRA Mutation Rate - 0.01 0.05 0.01
ULTRA Alternation Rate - 0.01 0.05 0.01

ULTRA Alignment Deviation - 10 10 10

Al Results

Parent Tourna- Success Difference in 95% Confidence
Selection ment Rate Success Rate Interval of Dif-
Method Size with Lexicase ference in Suc-
cess Rate

Lexicase - 0.99 - -

Tournament 2 0.01 0.98 [0.923, 0.999]
Tournament 3 0.01 0.98 [0.923, 0.999]
Tournament 4 0.05 0.94 [0.869, 0.975]
Tournament 5 0.02 0.97 [0.909, 0.993]
Tournament 6 0.04 0.95 [0.882, 0.981]
Tournament 7 0.03 0.96 [0.895, 0.987]
Tournament 8 0.06 0.93 [0.856, 0.968]
Tournament 9 0.07 0.92 [0.843, 0.961]
Tournament 10 0.04 0.95 [0.882, 0.981]
IFS 2 0.13 0.86 [0.771, 0.915]
IFS 3 0.43 0.56 [0.449, 0.649]
IFS 4 0.58 0.41 [0.302, 0.501]
IFS 5 0.55 0.44 [0.331, 0.532]
IFS 6 0.64 0.35 [0.246, 0.440]
IFS 7 0.57 0.42 [0.312, 0.512]
IFS 8 0.64 0.35 [0.246, 0.440]
IFS 9 0.71 0.28 [0.182, 0.367]
IFS 10 0.73 0.26 [0.164, 0.346]

A2 Results

Parent Tourna- Success Difference in 95% Confidence
Selection ment Rate Success Rate Interval of Dif-
Method Size with Lexicase ference in Suc-
cess Rate
Lexicase - 1.0 - -
Tournament 2 0 1.0 [0.953, 1.0]
Tournament 3 0.06 0.94 [0.869, 0.974]
Tournament 4 0.12 (.88 [0.795, 0.930]
Tournament 5 0.14 0.86 [0.772, 0.914]
Tournament 6 0.16 0.84 [0.749, 0.898]
Tournament 7 0.17 0.83 [0.737, 0.890]
Tournament 8 0.10 0.90 [0.819, 0.946]
Tournament 9 0.26 0.74 [0.638, 0.813]
Tournament 10 0.18 0.82 [0.726, 0.882]
IFS 2 0.28 0.72 [0.616, 0.795]
IFS 3 0.61 0.39 [0.286, 0.479]
IFS 4 0.74 0.26 [0.167, 0.343]
IFS 5 0.83 0.17 [0.090, 0.243]
IFS 6 0.84 0.16 [0.082, 0.232]
IFS 7 0.83 0.17 [0.090, 0.243]
IFS 8 0.88 0.12 [0.050, 0.185]
IFS 9 0.79 0.21 [0.124, 0.288]
IFS 10 0.72 0.28 [0.185, 0.364]

Digital Multiplier Results

Parent Tourna- Success Difference in 95% Confidence
Selection ment Rate Success Rate Interval of Dif-
Method Size with Lexicase ference in Suc-
cess Rate

Lexicase - 1.0 - -

Tournament 2 0 1.0 0.953, 1.0
Tournament 4 0 1.0 0.953, 1.0]
Tournament 6 0 1.0 0.953, 1.0]
Tournament 7 0 1.0 0.953, 1.0]
Tournament 8 0 1.0 0.953, 1.0

Factorial Results

Parent Tourna- Success Difference in 95% Confidence
Selection ment Rate Success Rate Interval of Dif-
Method Size with Lexicase ference in Suc-
cess Rate

Lexicase - 0.51 - -

Tournament 2 0 0.51 [0.401, 0.599]
Tournament 4 0 0.51 [0.401, 0.599]
Tournament 6 0 0.51 [0.401, 0.599]
Tournament 8 0 0.51 [0.401, 0.599]
Normalized 2 0 0.51 [0.401, 0.599]
Normalized 4 0 0.51 [0.401, 0.599]
Normalized 6 0 0.51 [0.401, 0.599]
Normalized 8 0.01 0.50 [0.390, 0.591]
IFS 2 0 0.51 [0.401, 0.599]
IFS 4 0 0.51 [0.401, 0.599]
IFS 6 0 0.51 [0.401, 0.599]
IFS 8 0 0.51 [0.401, 0.599]

wc Results

Parent Tourna- Success Difference in 95% Confidence
Selection ment Rate Success Rate Interval of Dif-
Method Size with Lexicase ference in Suc-
cess Rate

Lexicase - 0.055 - -

Tournament 3 0 0.055 0.020, 0.088!
Tournament 5 0 0.055 0.020, 0.088]
Tournament 7 0 0.055 0.020, 0.088]
IFS 3 0 0.055 0.020, 0.088]
IFS 5 0 0.055 0.020, 0.088]
IFS 7 0 0.055 0.020, 0.088]

Iversity

0.4~
0.3 -
=
&
=2
o
5
=02=
&
=
@
c -®- Lexicase
(é A Tourney 4 ~em e 4
0.1+ w. - 2 —~ # Tourney 8 i
N Normalized 8
%+ IFS 4
- IFS 8
0.0 I X y l 1
0 100 200 300 400 500

Generation

Fig. 4. Behavioral diversity for the factorial problem. The numbers beside
runs indicate the tournament size used.

Cost

Problem Parent Minimum mean Maximum mean
Selection time per genera- time per genera-
Method tion (seconds) tion (seconds)
A Lexicase 2.6 2.6
Tournament 1.2 1.4
IFS 1.2 1.3
Ao Lexicase 2.5 2.5
Tournament 1.2 1.4
IFS 1.0 1.2
DM Lexicase 464 464
Tournament 25 71
Fact Lexicase 11.9 11.9
Tournament 5.4 6.7
Normalized 0.4 0.6
IFS 3.0 4.7
wC Lexicase 394 394
Tournament 142 295
IFS 136 229

Future

Try lexicase selection on your problems and in your
systems!

Investigate how/when/why lexicase selection helps

Improve performance where it helps less, e.g. for problems
with continuous errors

Decrease cost

Look for Tom Helmuth's dissertation, to appear soon

Thanks

A y
.
TACN 4
Y u s
+GA . ”;:*TH" 7

* Members of the Hampshire College Computational
Intelligence Lab.

» This material is based upon work supported by the
National Science Foundation under Grants No. [017817,
1129139, and 1331283.Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

