
Solving Uncompromising Problems
with Lexicase Selection

in IEEE Transactions on Evolutionary Computation

Thomas Helmuth, Lee Spector, and James Matheson
Hampshire College & University of Massachusetts, Amherst

Hot Off the Press!

Outline

• Lexicase selection

• Modal and uncompromising problems

• Four problems

• Experimental results

• Conclusions

Selection

• In genetic programming, selection is typically based on
average performance across all test cases (sometimes
weighted, e.g. with "implicit fitness sharing")

• In nature, selection is typically based on sequences of
interactions with the environment

Lexicase Selection

• Emphasizes individual test cases and combinations of
test cases; not aggregated fitness across test cases

• Random ordering of test cases for each selection event

• Can DRAMATICALLY enhance the power of genetic
programming to solve problems

Lexicase Selection
To select single parent:

1. Shuffle test cases

2. First test case – keep best individuals

3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist in the tests that
happen to have come first, and may or may not be
particularly good on average

Modal Problems

• Require successful programs to do something
qualitatively different in different circumstances

• “Circumstances” vary across fitness cases

• How many modes? How are they detected? May not be
obvious in advance

• Many software design problems (among others) are
modal

Uncompromising Problems

• Any acceptable solution must perform as well on each
test case as it is possible to perform on that test case

• Not acceptable for a solution to perform sub-optimally
on any one test case in exchange for good performance
on others

• Many software design problems (among others) are
uncompromising

Potential

• Not only for modal or uncompromising problems

• Other uses of selection in genetic programming

• Other forms of evolutionary computation with case-like
assessment

• More to be done, e.g. for problems with continuous
errors

Related Work
• Multi-objective evolution (generally assumes objectives,

which may not be factored by input, are known in
advance)

• Multi-modal problems (generally refers to problems with
multiple global optima)

• Lexicographic ordering in selection (but here we order
fitness cases, in random order)

• Ensemble methods (but here we seek a single program
perhaps with some code used for multiple modes)

Experiments
• Problems

• Finding discriminator terms in finite algebras
• Designing digital multipliers
• Symbolic regression of the factorial function
• Automatic programming of "wc" (word count)

• Genetic programming systems
• Koza-style tree-based GP
• PushGP

• Selection
• Lexicase
• Tournament (various sizes)
• Implicit Fitness Sharing (various tournament sizes)

Finite Algebras

Digital Multiplier

• 3 bits x 3 bits => 6 bits

Factorial

• Inputs 1!=1 to 10!=3628800

• Various forms of normalization for non-lexicase methods

• Instructions for integers, booleans, execution stack (for
conditional branches and recursion)

• No high-level Push instructions that allow for trivial
solutions

wc

wc Test Cases

• 0 to 100 character files

• Random string (200 training, 500 test)

• Random string ending in newline (20 training, 50 test)

• Edge cases (22; empty string, multiple newlines, etc.)

Instructions

• General purpose

• I/O

• Control flow

• Tags for modularity

• String, integer, and boolean

• Random constants

Implicit Fitness Sharing

• Scale errors per case based on population-wide error

• Non-binary version

Push
• Designed for program evolution

• Data flows via stacks, not syntax

• One stack per type:  
integer, float, boolean, string, code, exec, vector, ...

• Rich data and control structures

• Minimal syntax:  
program → instruction | literal | (program*)

• Uniform variation, meta-evolution

Parameters

A1 Results

A2 Results

Digital Multiplier Results

Factorial Results

wc Results

Diversity

Cost

Future

• Try lexicase selection on your problems and in your
systems!

• Investigate how/when/why lexicase selection helps

• Improve performance where it helps less, e.g. for problems
with continuous errors

• Decrease cost

• Look for Tom Helmuth's dissertation, to appear soon

Thanks

• Members of the Hampshire College Computational
Intelligence Lab.

• This material is based upon work supported by the
National Science Foundation under Grants No. 1017817,
1129139, and 1331283. Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

