Evolution of Expressive Programs

Principles, Products, and Prospects

Lee Spector
Cognitive Science, Hampshire College
Computer Science, UMass Amherst
http://hampshire.edu/lspector

http://hampshire.edu/lspector

Qutline

Program evolution
 Genetic programming

- Digital organisms
Expressive representations (Push)
Hints from nature (lexicase selection)

The future

Genetic Algorithms

Random Generation

Assessment > Solution

/N

Selection ~ Variation

110111110111

110101010010

!

110100100110

000011100111

!

011011011100

100100010101 001101001110 100100101000 100111001011
111110010001 010101010011 101101000101 100100011101
110000011111 000111010100 110101011001 111010001001
101111010110 110010110101 111101001011 101101111010
000111100011 010110001000 111001001110 101010111111
111100100011 011000100110 111001001110 001001101100

100100100000

100001101011 000001000011

010000100110 100101101010

| >~~_— |

100001010010 010111101111

101110101100 100001110100

010111000100 011101100101

010011010101

|~

000010011111

—_|

101101110100 010111011001

011001010110

Genetic Programming

* Genetic algorithms that produce executable
computer programs

* Programs are assessed by executing them

» Automatic programming by evolution

Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh,Yu, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Artificial assembly-like languages (Ray, Adami, ...).

Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Mutating Lisp

(+ (* X Y)
(+ 4 (- 2 23)))

(+ (* X Y)
(+ 4 (- 2 23)))

(+ (- (+ 2 2) 2Z)
(+ 4 (- Z 23)))

Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- Z 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (* 2 2) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 2z) 1)
(+ 4 (- 2 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X Y)
(+ 14 (/ Y X))))

Symbolic Regression

- A simple example

* Given a set of data points, evolve a program that
produces y from x.

* Primordial ooze: +, -, *, %, x, 0. |

» Fitness = error (smaller is better)

GP Parameters

Maximum number of Generations: 51

S1ze of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE

Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

Evolving y =x3-0.2

0.75
—o— Target
0.5 -
0.25 -
0 -

0.25
0.5-
0.75

Best Program, Gen O

1
—o— Target .
0754 - o Generation 0
(- (% (* 0.1
(* X X))
(- (% 0.1 0.1)
(* X X)))

0.1)

Best Program, Gen 5

0.75
—o— Target
051 O Generation 5
(- (* (* (3 X 0.1) |
(* 0.1 X))
(- X 0.25 -
(%3 0.1 X)))
0.1) 0.
-0.25 .
= e Vo)

2
0.75 7

Best Program, Gen |2

0.75
(+ (- (- 0.1 —o— Target
(- 0.1
(_ (* X X) Qe Generation 12
(+ 0.1 0.5 -
(- 0.1
(* 0.1
0.1))))))
(* X
(* (% 0.1 0.25 -
(% (* (* (- 0.1 0.1)
(+ X
(- 0.1 0.1)))
X)
(+ X (+ (= X 0.1) 0 -
(* X X)))))
(+ 0.1 (+ 0.1 X)))))
(* X X))

0

25
5 -
0.75 7

Best Program, Gen 22

0.75

—o— Target
0.5 1o O Generation 22 /I

(= (= (* X (* X X))

0.1) 025 -
0.1)
O_
-
ozsfm}

Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College

Hampshire College SUNY New Paltz ~ Ambherst, MA 01002
Amherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Amherst, MA 01002 Ambherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

Humies 2008
GOLD MEDAL

Goal

Find finite algebra terms that have certain special
properties

For decades there was no way to produce these terms
in general, short of exhaustive search

Current best methods produce enormous terms

Want to be able to find small terms quickly

Significance, Time

Uninformed Search
Expected Time (Trials)

3 element algebras

Mal’cev 5 seconds (31° =~ 107)

Pixley/majority 1 hour (32! ~ 1019)

discriminator 1 month (327 ~ 1013)
4 element algebras

Mal’cev 10° years (42% ~ 1017)

Pixley /majority 1019 years (440 ~ 10%%)
discriminator 1044 years (464 1038)

Significance, Time

Uninformed Search GP
Expected Time (Trials) Time
3 element algebras
Mal’cev 5 seconds (31° =~ 107) I minute
Pixley/majority 1 hour (32! ~ 1019) 3 minutes
discriminator 1 month (327 ~ 1013) 5 minutes
4 element algebras
Mal’cev 10° years (42® ~ 1017) | 30 minutes
Pixley /majority 1019 years (440 ~ 10%%) 2 hours
discriminator 104 years (4% ~ 10°%) 7

Significance, Size

Term Type Primality Theorem

Mal’cev 10, 060, 219
Majority 6,847,499
Pixley 1,257,556, 499
Discriminator 12,575,109

(fOI" AI)

Significance, Size

Term Type Primality Theorem

Mal’cev 10,060,219 | 12
Majority 6,847,499 | 49

Pixley 1,257,556,499 | 59
Discriminator 12,575,109 | 39

(fOI" AI)

Human Competitive!?

« Rather: human-WHOMPING!

» Outperforms humans and all other known methods on
significant problems, providing benefits of several orders
of magnitude with respect to search speed and result size

+ Here GP has provided the first solution to a previously
open problem in the field

\J/
HHA

1 1 U(3.1929)
any
o <P 0
M, M,

Spector

GPTP 2014

Analyzing a Decade of Human-Competitive
(“HUMIE”) Winners: What Can We Learn?

Karthik Kannappan, Lee Spector, Moshe Sipper, Thomas Helmuth, William
Lacava, Jake Wisdom, Omri Bernstein

Humies Criteria

The result was Patented as an invention in the past is an improvement over a patented invention or would

qualify today as a patentable new invention.

The result is equal to or better than a result that was accepted as a IEW SCientiﬁC result ac the time when it
was published in a peer-reviewed scientific journal.

The result is equal to or better than a result that was placed into a database or archive of results maintained by an

internationally recognized panel of scientific experts.

The result is PUinShabIe in its own ”ght as a new scientific result independent of the fact that the result

was mechanically created.

The result is equal to or better than the M OST recent human-created solution to a long-standing

problem for which there has been a succession of increasingly better human-created solutions.

The result is equal to or better than a result that was considered an achievement in its ﬁ@ld at the time it

was first discovered.

The result solves a problem of indiSPUtabIe d’fﬁCUIty in its field.

The result holds its own or wins a regulated ComPEtition inVOIVing human contestants (in the

form of either live human players or human-written computer programs).

Humies Algorithms

Algorithm Count
Genetic Programming (GP) 22
Genetic Algorithms (GA) 15
Evolutionary Strategies (ES) 2
Differential Evolution (DE) 1

Genetics Based Machine Learning (GBML) 1
Metaheuristic 1

Humies Applications

Application Count Application Category
Antennas 1 Engineering (19)
Biology 2 Science (7)
Chemistry 1 Science (7)
Computer vision 2 Computer science (7)
Electrical engineering 1 Engineering (19)
Electronics 5 Engineering (19)
Games 6 Games (6)

Image processing 3 Computer science (7)
Mathematics 2 Mathematics (3)
Mechanical engineering 4 Engineering (19)
Medicine 2 Medicine (2)
Operations research 1 Engineering (19)
Optics 2 Engineering (19)
Optimization 1 Mathematics (3)
Photonics 1 Engineering (19)
Physics 1 Science (7)

Planning 1 Computer science (7)
Polymers 1 Engineering (19)
Quantum 3 Science (7)

Security 1 Computer science (7)
Software engineering 3 Engineering (19)

Humies Problem Types

Problem Type Count

Classification 5
Clustering 1

Design 20
Optimization 8
Planning 1

Programming 4
Regression 3

Evolution, the Designer

‘1'.\' H .‘.‘.T 'v'.\' C LI L [\' E" .‘.‘. p\ 'u'.\' : N S.‘.‘.]" -’\ LE E E rlE CT C p\

. . . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that

complex and useful designs can indeed emerge from random Darwinian
processes.

“Darwinian evolution is itself a designer worthy
of significant respect, if not religious devotion.”

Digital Organisms

For the study of general principles of living systems

Populations of individuals that act locally in an
environment

Explore, in silico, key interactions among development,
form, physics, behavior (including reproductive behavior),
and ecology that underpin biological evolution

How do these factors interact, under natural selection,
to produce adaptive complexity!?

Core War, Tierra, Avida, Echo, Polyworld, Framsticks, ...

Unfortunately Necessary

» Outrageous simplifications

- Combinations of features normally observed at radically
different scales

ion Blocks

IVIS

D

/I#/)
=V,

Reproductive Competence

Variations

1.5

300

sun
donation size

donation tolerance
collection size
collection tolerance

copy fidelity

mutation limit

mate contribution
preferred mate difference
adhesion

pulse rate

sigmoid compression
blocks

Joints

Jjoint/block ratio
compressed size

0.5 T .
E
0 - —
B
05 | 1 -
A
t: }
_1 D
Figure 4: Averaged data from 40 runs of
the Division Blocks system, collected after 1000
time steps of reproductive competence. Er-
ror bars indicate +1 standard deviation. A:
average tag values; B: average donationsize

(left) and donationtolerance (right); C: average
stemdonationsize (left) and stemdonationtolerance
(right); D: average matecontribution; KE: average
adhesion.

Expressiveness

* What set of computations can be expressed in the

language!

- Maximally (equally) expressive:

» Turing machine tables

- Lambda calculus expressions
» Partial recursive functions
 Register machine programs
 Assembly language programs

* etc.

Evolvability

The fact that a computation can be expressed in a
formalism does not imply that a correct expression can be
produced in that formalism by a human programmer or by
an evolutionary process.

Nature’s Language

 Can be characterized at multiple levels

+ Carbon chemistry

- Combinatoric representations

» Vast, interconnected space of structures and dynamics

- Expressive!

Data/Control Structure

» Data abstraction and organization

Data types, variables, name spaces, data structures, ...

 Control abstraction and organization

Conditionals, loops, modules, threads, ...

Structure via GP (1)

- Specialize GP techniques to directly support human
programming language abstractions

- Strongly typed genetic programming
* Module acquisition/encapsulation systems

- Automatically defined functions

» Automatically defined macros

» Architecture altering operations

ADFs

All programs in the population have the same, pre-
specified architecture

Genetic operators respect that architecture
Significant implementation costs
Significant pre-specification

Architecture-altering operations: more power and higher
costs

Structure via GP (2)

Evolve programs in a minimal-syntax language that is
nonetheless expressive enough to support a full range of
data and control abstractions

Orchestrate data flows via stacks, not via syntax

Minimal syntax + maximal semantics

Push

Push

* Designed for program evolution
- Stack-based postfix language with one stack per type

- Types include: integer, float, boolean, string, code, exec,
vector, [add more as needed]

* Minimal syntax:

program — instruction | literal | (program*)

» Missing argument? NOOP

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,

instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =

Ma’th —I_v T /7 X, >7 <7

(INTEGER and FLOAT) | MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,

(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT

Control manipulation | DO*, DOxCOUNT, DO*RANGE,

(CDDE and EXEC) DO*TIMES, IF

Why Push?

Highly expressive: data types, data structures, variables,
conditionals, loops, recursion, modules, ...

Elegant: minimal syntax and a simple, stack-based
execution architecture

Evolvable
Extensible
Supports uniform variation

Supports several forms of meta-evolution

Selection

In genetic programming, selection is typically based on
average performance across all test cases

In nature, selection is typically based on sequences of
interactions with the environment

Tournament Selection

* For some pre-determined tournament size n

+ Choose n individuals from the population randomly

« Select the best of these n

+ "The best" is the one with the best average performance

across all test cases

Implicit Fitness Sharing

- The average is weighted so that test cases for which the

population performs worse count for more

| exicase Selection

- Emphasizes individual test cases; not aggregated fitness

across test cases

- Random ordering of test cases for each selection event

| exicase Selection

To select single parent:
|. Shuffle test cases
2. First test case — keep best individuals
3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist in the tests that
happen to have come first,and may or may not be
particularly good on average

WC

® OO0 L] WC — bash — 80x40

WC Swec wc.tex
449 8105 55491 wc.tex

WC $

newlines
words

characters

wc Test Cases

* 0 to 100 character files

* Random string (200 training, 500 test)
* Random string ending in newline (20 training, 50 test)

 Edge cases (22; empty string, multiple newlines, etc.)

Instructions

General purpose
/O

Control flow

Tags for modularity

String, integer, and boolean

Random constants

Input file_readchar, file_readline, file_-
EOF, file_begin

Output output_charcount, output_wordcount,
output_linecount

Exec exec_pop, exec_swap, exec_rot,

exec_dup, exec_yank, exec_yankdup,
exec_shove, exec_eq, exec_stack-
depth, exec_when, exec_if, exec_-
do*times, exec_do*count, exec_-
do*range, exec_y, exec_k, exec_s

Tag ERCs

tag_exec, tag_integer, tag _string,
tagged

String

string_split, string _parse_to_chars,
string_whitespace, string_contained,
string_reverse, string_concat,
string_take, string pop, string -
eq, string stackdepth, string rot,
string_yank, string_swap, string -
yankdup, string_flush, string -
length, string_shove, string_dup

Integer

integer_add, integer_swap, integer_-
yank, integer_dup, integer_yankdup,
integer_shove, integer_mult, inte-
ger_div, integer_max, integer_sub,
integer_mod, integer_rot, integer_-
min, integer_inc, integer_dec

Boolean

boolean_swap, boolean_and, boolean_-
not, boolean_or, boolean_frominte-
ger, boolean_stackdepth, boolean_dup

ERC

Integer from [-100, 100
{-\nn. "\t". nun }
{z|x is a non-whitespace character}

wc Results

Tournament Successes
Selection Size (200 runs)

Lexicase -

Tournament

Implicit Fitness
Sharing

N O O N O W

©O O O O O O| -

Epistasis

Collaboration with Jason Moore at the Geisel School of
Medicine at Dartmouth

Genetic analysis of susceptibility to human diseases
Difficult because of epistatic interactions among genes
Using GP to find genome classifiers

Hypothesis: Because it selects for performance on
combinations of cases, lexicase selection will help GP
systems to find classifiers that recognize expistatic
Interactions

Autoconstructive Evolution

* Individual programs make their own children

- Hence they control their genetic representations,
mutation rates, sexuality, reproductive timing, etc.

 The machinery of reproduction and diversification (i.e.,
the machinery of evolution) evolves

SwarmEvolve 2

A "swarm-like" agent environment with energy dynamics
and conservation

» Behavior (including action, communication, energy

sharing, and reproduction) controlled by evolved Push
programs

Evolved Strategy

 Reckless goal-seeking + sharing
* Functional instructions of evolved code:
(toFood feedOther myAge spawn randF)

* Accelerates directly toward nearest goal, feeds others,
and turns random colors

» Evolved mutation regime: rate « |/age

* High goal coverage, low lifetimes

Sharing and Adaptation

- Sharing is with closest agent of similar/dissimilar color
- Recipient must have less energy than provider

* Mutual: Share only if recipient tried to share

» Charity: Share regardless of recipient’s behavior

- Waste:All energy lost (a control)

* No-op: No energy changes (another control)

* Various settings of environmental stability parameter

Results (1,625 Runs)

EJ-‘?::' I 1 1 | | 1 L L L I | | | | 1 | | | | 1 1 Il | | | | | | | L L |
L Waste 5 '11“111”- ——

0.5 F . Charity Sharing - -4+ - =
- Mutual Sharing —s—

.45 |- Noop Sharing = = i« =

0.4 F —

S | Lk L - —

EJ.-?I-:_:I L T T T T T T T - '-.-'--.-.-.-.... +'_:‘:

0.3 | x _
.25 | —
0.2 _
0.15 | —
|:_|.1 ' A | L ¢ 1l L5111

10 [10O 1 OO0

Environmental Stability

Fig. 4. Proportion of agents that share food (on the y axis) graphed vs. environmental
(energy source) stability (on the x axis) for four sharing conditions (see text).

Conclusions

Genetic programming can solve difficult and important
problems

Digital organisms can illuminate aspects of biological
evolution

Expressive program representations can enhance the
utility of genetic programming and of digital organism
systems

Hints from nature can lead to abstractions that facilitate
program evolution, as in the case of lexicase selection

Future

Automatic programming of large-scale software systems

Computational life forms demonstrating open-ended
evolution and emergent evolutionary transitions

Significant discoveries, produced by evolutionary
processes, in many areas of science and engineering

Thanks

» David Clark, Moshe Sipper, and members of the

Hampshire College Computational Intelligence Lab
including Tom Helmuth, Jon Klein, and Karthik
Kannappan for specific contributions to these slides.

» This material is based upon work supported by the

National Science Foundation under Grants No. 1017817,
1129139, and 1331283. Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

