
Evolution of Expressive Programs
!

Principles, Products, and Prospects

Lee Spector	

Cognitive Science, Hampshire College	

Computer Science, UMass Amherst	

http://hampshire.edu/lspector	

http://hampshire.edu/lspector

Outline

• Program evolution	

• Genetic programming	

• Digital organisms	

• Expressive representations (Push)	

• Hints from nature (lexicase selection)	

• The future

Genetic Algorithms

Genetic Programming

• Genetic algorithms that produce executable
computer programs	

• Programs are assessed by executing them	

• Automatic programming by evolution

Program Representations
• Lisp-style symbolic expressions (Koza, ...).	

• Purely functional/lambda expressions (Walsh, Yu, ...).	

• Linear sequences of machine/byte code (Nordin et al., ...).	

• Artificial assembly-like languages (Ray, Adami, ...).	

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).	

• Graph-structured programs (Teller, Globus, ...).	

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)	

• Fuzzy rule systems (Tunstel, Jamshidi, ...)	

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).	

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Mutating Lisp

! (+ (* X Y)
! (+ 4 (- Z 23)))
!
! (+ (* X Y)
! (+ 4 (- Z 23)))
!
! (+ (- (+ 2 2) Z)
! (+ 4 (- Z 23)))

Recombining Lisp

Parent 1:!(+ (* X Y)
 (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! ! (* (- (* 2 Z) 1)
! ! (+ 14 (/ Y X))))
!
Child 1:!(+ (- (* 2 Z) 1)
! ! (+ 4 (- Z 23)))
Child 2:!(- (* 17 (+ 2 X))
! ! (* (* X Y)
! ! (+ 14 (/ Y X))))

Symbolic Regression

• A simple example	

• Given a set of data points, evolve a program that
produces y from x.	

• Primordial ooze: +, -, *, %, x, 0.1	

• Fitness = error (smaller is better)

GP Parameters

Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

Evolving y = x3-0.2

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Target

Best Program, Gen 0

(- (% (* 0.1
 (* X X))
 (- (% 0.1 0.1)
 (* X X)))
 0.1)

-0.25

0

0.25

0.5

0.75

1

0

0.
25 0.
5

0.
75 1

Generation 0

Target

Best Program, Gen 5

(- (* (* (% X 0.1)
 (* 0.1 X))
 (- X
 (% 0.1 X)))
 0.1)

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 5

Target

Best Program, Gen 12

(+ (- (- 0.1
 (- 0.1
 (- (* X X)
 (+ 0.1
 (- 0.1
 (* 0.1
 0.1))))))
 (* X
 (* (% 0.1
 (% (* (* (- 0.1 0.1)
 (+ X
 (- 0.1 0.1)))
 X)
 (+ X (+ (- X 0.1)
 (* X X)))))
 (+ 0.1 (+ 0.1 X)))))
 (* X X))

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 12

Target

Best Program, Gen 22

(- (- (* X (* X X))
 0.1)
 0.1)

-0.25

0

0.25

0.5

0.75

0

0.
25 0.

5

0.
75 1

Generation 22

Target

Genetic Programming for Finite Algebras

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

David M. Clark
Mathematics

SUNY New Paltz
New Paltz, NY 12561

clarkd@newpaltz.edu

Ian Lindsay
Hampshire College
Amherst, MA 01002

iml04@hampshire.edu

Bradford Barr
Hampshire College
Amherst, MA 01002

bradford.barr@gmail.com

Jon Klein
Hampshire College
Amherst, MA 01002
jk@artificial.com

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008	

GOLD MEDAL

Goal

• Find finite algebra terms that have certain special
properties	

• For decades there was no way to produce these terms
in general, short of exhaustive search	

• Current best methods produce enormous terms	

• Want to be able to find small terms quickly

Significance, Time

Significance, Time

Significance, Size

(for A1)

Significance, Size

(for A1)

Human Competitive?

• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on
significant problems, providing benefits of several orders
of magnitude with respect to search speed and result size	

• Here GP has provided the first solution to a previously
open problem in the field

Humies

GPTP 2014

Humies Criteria
• The result was patented as an invention in the past is an improvement over a patented invention or would

qualify today as a patentable new invention.	

• The result is equal to or better than a result that was accepted as a new scientific result at the time when it
was published in a peer-reviewed scientific journal.	

• The result is equal to or better than a result that was placed into a database or archive of results maintained by an

internationally recognized panel of scientific experts.	

• The result is publishable in its own right as a new scientific result independent of the fact that the result
was mechanically created.	

• The result is equal to or better than the most recent human-created solution to a long-standing
problem for which there has been a succession of increasingly better human-created solutions.	

• The result is equal to or better than a result that was considered an achievement in its field at the time it
was first discovered.	

• The result solves a problem of indisputable difficulty in its field.	

• The result holds its own or wins a regulated competition involving human contestants (in the
form of either live human players or human-written computer programs).

Humies Algorithms

Humies Applications

Humies Problem Types

Evolution, the Designer

“Darwinian evolution is itself a designer worthy
of significant respect, if not religious devotion.”

Digital Organisms
• For the study of general principles of living systems	

• Populations of individuals that act locally in an
environment	

• Explore, in silico, key interactions among development,
form, physics, behavior (including reproductive behavior),
and ecology that underpin biological evolution	

• How do these factors interact, under natural selection,
to produce adaptive complexity?	

• Core War, Tierra, Avida, Echo, Polyworld, Framsticks, ...

Unfortunately Necessary

• Outrageous simplifications	

• Combinations of features normally observed at radically
different scales

Division Blocks

Reproductive Competence

Variations

on the basis of the first data that was printed after 1000
time steps of reproductive competence (see above). The av-
erage age of blocks at the time of this reporting, averaged
over all 40 runs, was 39.1 time steps, so our data generally
reflect the state of the system from at least 25 generations
beyond the achievement of reproductive competence. The
average time step at time of reporting was 6911, meaning
that it took nearly 6000 time steps, on average, to achieve
reproductive competence. The average number of blocks at
the time of reporting was 392.

Figure 4 shows some of this data, displaying the cross-run
averages of the population-wide averages of seven variables
of interest. Error bars indicate the range of variation (one
standard deviation above and below) across the 40 runs.
The plot marked “A” displays the average tag values which,
as expected, are widely distributed with an average value,
across all runs, of about 0.0 (the center of the range). There
is no reason for any particular tag value to be more generally
adaptive than any other, so what we see here is a random
distribution across runs.8 Plot A therefore provides a stan-
dard to which other plots can be compared; any which di�er
significantly from A probably reflect adaptations.

The plot marked “B” displays the average values of ef-
fectors that control energy donation: donationsize (on the
left) and donationtolerance (on the right). The relatively
high values for these variables indicate that most blocks, in
most runs, are donating energy in relatively large quantities
and without much discrimination. The relatively narrow
range of variation of these variables indicates that this co-
operative energy donation behavior emerges fairly reliably.
Why might this be the case? Possibly because donations
produce disparities that increase the chances that one mem-
ber of a pair of connected sibling blocks will survive to divide
again, or for other reasons that have been discussed in the
literature of the evolution of altruism (e.g. [16]); more re-
search will be required to sort this out.

The plot marked “C” displays stemdonationsize (on the
left) and stemdonationtolerance (on the right). The fact
that these values are lower than those for non-stem donation
indicate a tendency for blocks to adopt asymmetric donation
strategies, although the stinginess toward stem blocks is less
reliable than the altruism toward non-stems. Plot D displays
the average values of matecontribution, demonstrating a
strong and reliable tendency against sexual recombination,
at least at this stage of a run and with the parameters that
were used. Plot E displays the average value of adhesion,
indicating the high adaptive value of strong joints in the
system as it was configured.

One can speculate about adaptive explanations for each
of these results, but as with the energy donation results in
plot B a variety of explanations may be available and addi-
tional experiments would be required to draw firm conclu-
sions from plots C–E . The important point at this stage,
however, is that the Division Blocks system produces data
such as these that can be compared among di�erently pa-
rameterized runs; for example one might explore theories
about the adaptive benefits of recombination by changing
various parameters and by observing changes to plot D.

8Tag distributions within runs may not be random and they
may display complex dynamics involving drift, founder ef-
fects, adaptation, etc. But because no tag value has any
intrinsic meaning we would expect the tag values involved
in such dynamics to be distributed randomly across runs.

Figure 4: Averaged data from 40 runs of
the Division Blocks system, collected after 1000
time steps of reproductive competence. Er-
ror bars indicate ±1 standard deviation. A:
average tag values; B: average donationsize
(left) and donationtolerance (right); C: average
stemdonationsize (left) and stemdonationtolerance
(right); D: average matecontribution; E: average
adhesion.

4. DISCUSSION
There is much more that can be explored with Division

Blocks than we have been able to present here, even in the
context of the current implementation and even with a single
set of configuration parameters. For example it would be in-
teresting to track the variables shown in Figure 4, along with
other variables (including the numbers, sizes, and distribu-
tions of blocks, the other e�ector values in Table 2, etc.),
across long periods of evolutionary time. It would also be
interesting to analyze the behavior of the system relative
to measures of “evolutionary activity” that have been de-
scribed in the literature [2, 22]. Additional insights might be
gleaned from variation of environmental conditions and from
incorporation of extensions such as the ability to form new
joints when blocks collide. An extension that is currently
under development involves parallelizing the system by al-
lowing block transport between simulations that are running
asynchronously on many computers in a high-performance
cluster. Simulations with over one or two thousand blocks
become unmanageably slow on current desktop hardware,
but with cross-simulation block transport (occurring, for ex-
ample, at the edges of the simulated world) we should be
able to connect many machines to support simulations with
numbers of blocks that are bounded only by the amount of
available hardware.

The really intriguing possibilities for future work, how-
ever, concern ways in which Division Blocks might be used
to explore new questions about the relations between de-
velopment, form, and behavior in open-ended evolutionary
processes. For example, what environmental conditions are
required for the emergence of various kinds of morphological
or developmental complexity? What patterns of resource

Expressiveness
• What set of computations can be expressed in the

language?	

• Maximally (equally) expressive:	

• Turing machine tables	

• Lambda calculus expressions	

• Partial recursive functions	

• Register machine programs	

• Assembly language programs	

• etc.

Evolvability

The fact that a computation can be expressed in a
formalism does not imply that a correct expression can be
produced in that formalism by a human programmer or by
an evolutionary process.

Nature’s Language

• Can be characterized at multiple levels	

• Carbon chemistry	

• Combinatoric representations	

• Vast, interconnected space of structures and dynamics	

• Expressive!

Data/Control Structure

• Data abstraction and organization 
 
Data types, variables, name spaces, data structures, ...  

• Control abstraction and organization 
 
Conditionals, loops, modules, threads, ...

Structure via GP (1)

• Specialize GP techniques to directly support human
programming language abstractions	

• Strongly typed genetic programming	

• Module acquisition/encapsulation systems	

• Automatically defined functions	

• Automatically defined macros	

• Architecture altering operations

ADFs

• All programs in the population have the same, pre-
specified architecture	

• Genetic operators respect that architecture	

• Significant implementation costs	

• Significant pre-specification	

• Architecture-altering operations: more power and higher
costs

Structure via GP (2)

• Evolve programs in a minimal-syntax language that is
nonetheless expressive enough to support a full range of
data and control abstractions	

• Orchestrate data flows via stacks, not via syntax	

• Minimal syntax + maximal semantics	

• Push

Push

• Designed for program evolution	

• Stack-based postfix language with one stack per type	

• Types include: integer, float, boolean, string, code, exec,
vector, [add more as needed]	

• Minimal syntax:  
program → instruction | literal | (program*)	

• Missing argument? NOOP

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

Why Push?
• Highly expressive: data types, data structures, variables,

conditionals, loops, recursion, modules, ...	

• Elegant: minimal syntax and a simple, stack-based
execution architecture	

• Evolvable	

• Extensible	

• Supports uniform variation	

• Supports several forms of meta-evolution

Selection

• In genetic programming, selection is typically based on
average performance across all test cases	

• In nature, selection is typically based on sequences of
interactions with the environment

Tournament Selection

• For some pre-determined tournament size n	

• Choose n individuals from the population randomly	

• Select the best of these n	

• "The best" is the one with the best average performance
across all test cases

Implicit Fitness Sharing

• The average is weighted so that test cases for which the
population performs worse count for more

Lexicase Selection

• Emphasizes individual test cases; not aggregated fitness
across test cases	

• Random ordering of test cases for each selection event

Lexicase Selection
To select single parent:	

	

 1.	

 Shuffle test cases 	

	

 2.	

 First test case – keep best individuals 	

	

 3.	

 Repeat with next test case, etc. 	

Until one individual remains	

The selected parent may be a specialist in the tests that
happen to have come first, and may or may not be
particularly good on average

wc

wc Test Cases

• 0 to 100 character files	

• Random string (200 training, 500 test)	

• Random string ending in newline (20 training, 50 test)	

• Edge cases (22; empty string, multiple newlines, etc.)

Instructions

• General purpose	

• I/O 	

• Control flow 	

• Tags for modularity 	

• String, integer, and boolean 	

• Random constants

wc Results

Epistasis
• Collaboration with Jason Moore at the Geisel School of

Medicine at Dartmouth	

• Genetic analysis of susceptibility to human diseases	

• Difficult because of epistatic interactions among genes	

• Using GP to find genome classifiers	

• Hypothesis: Because it selects for performance on
combinations of cases, lexicase selection will help GP
systems to find classifiers that recognize expistatic
interactions

Autoconstructive Evolution

• Individual programs make their own children	

• Hence they control their genetic representations,
mutation rates, sexuality, reproductive timing, etc.	

• The machinery of reproduction and diversification (i.e.,
the machinery of evolution) evolves

SwarmEvolve 2

• A "swarm-like" agent environment with energy dynamics
and conservation	

• Behavior (including action, communication, energy
sharing, and reproduction) controlled by evolved Push
programs

Evolved Strategy

• Reckless goal-seeking + sharing	

• Functional instructions of evolved code:
(toFood feedOther myAge spawn randF) 	

• Accelerates directly toward nearest goal, feeds others,
and turns random colors	

• Evolved mutation regime: rate ∝ 1/age	

• High goal coverage, low lifetimes

Sharing and Adaptation
• Sharing is with closest agent of similar/dissimilar color	

• Recipient must have less energy than provider	

• Mutual: Share only if recipient tried to share	

• Charity: Share regardless of recipient’s behavior	

• Waste: All energy lost (a control)	

• No-op: No energy changes (another control)	

• Various settings of environmental stability parameter

Results (1,625 Runs)

Conclusions
• Genetic programming can solve difficult and important

problems	

• Digital organisms can illuminate aspects of biological
evolution	

• Expressive program representations can enhance the
utility of genetic programming and of digital organism
systems	

• Hints from nature can lead to abstractions that facilitate
program evolution, as in the case of lexicase selection

Future

• Automatic programming of large-scale software systems	

• Computational life forms demonstrating open-ended
evolution and emergent evolutionary transitions	

• Significant discoveries, produced by evolutionary
processes, in many areas of science and engineering

Thanks
• David Clark, Moshe Sipper, and members of the

Hampshire College Computational Intelligence Lab
including Tom Helmuth, Jon Klein, and Karthik
Kannappan for specific contributions to these slides.	

• This material is based upon work supported by the
National Science Foundation under Grants No. 1017817,
1129139, and 1331283. Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

