Artificial Intelligence and Human Planning

Lee Spector, Ph.D.

Cognitive Science Hampshire College Amherst, MA 01002 Ispector@hampshire.edu

Joint work with: Jordan Grafman Mary Jo Rattermann

Overview

- AI planning systems
- Partial-order planning
- The D¹S¹ domain
- Planning and the frontal lobes
- The Chores experiment
- Planet H
- Conclusions

Planning Systems

Determine what to do in order to achieve a set of goals.

"What to do" usually means "which actions, in what order."

Blocks-world......Real-world agents

Many approaches, including:

- Generative
- Case-based
- Abstraction-based
- Reactive
- ...etc.

Action Representation

"STRIPS" operators consist of preconditions, add-lists, and delete-lists.

• The precondition states what must be true for the operator to be applicable.

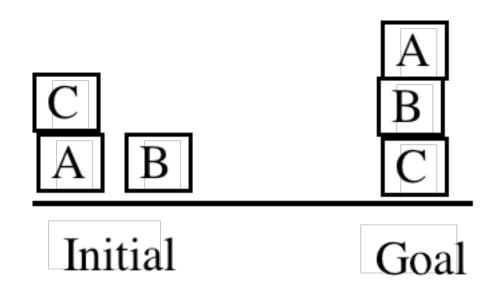
- The add-list specifies things that the operator will make true.
- The delete-list specifies things that the operator will make false.

Example STRIPS-style Operator

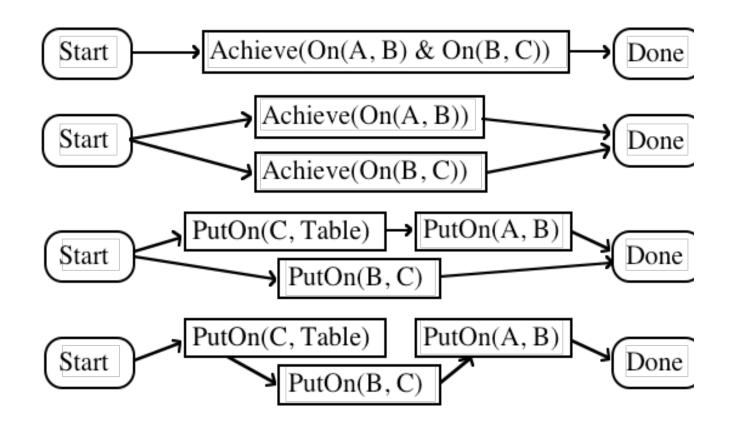
Operator: Eat-Macaroni Preconditions: Have-Macaroni, Hungry Add-List: Macaroni-In-Stomach Delete-List: Hungry, Have-Macaroni

The GPS/STRIPS Planning Algorithm

Achieve the conditions in the goal list one at a time.


Each goal condition that is already true by the time it is considered can simply be skipped.

For goals that must be achieved, find an operator with the goal condition in its add-list and recursively achieve all of its preconditions. Then "apply" the operator by changing the state of the world according to its add- and delete-lists.


Partial-order Planning

- Represent partial plans as partially-ordered sets of plan steps
- Used in most "state of the art" AI planning systems
- Not used in most neuropsychological models of planning

The Sussman Anomaly

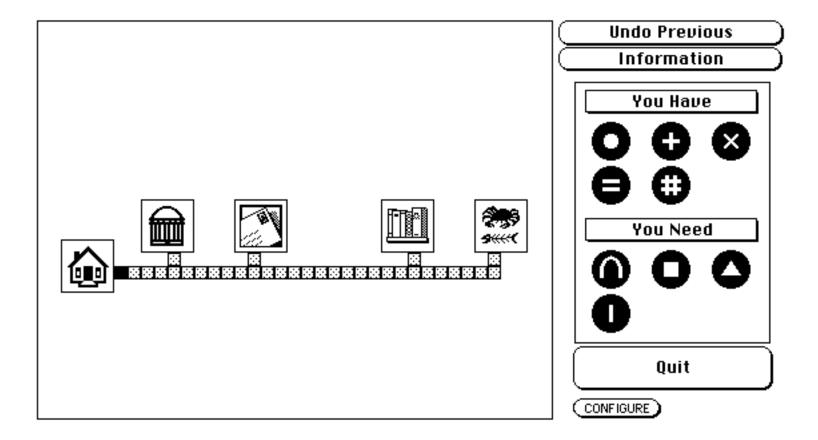
Solving the Sussman Anomaly with Partially Ordered Partial Plans

The D¹S¹ Domain (Barrett & Weld 1993)

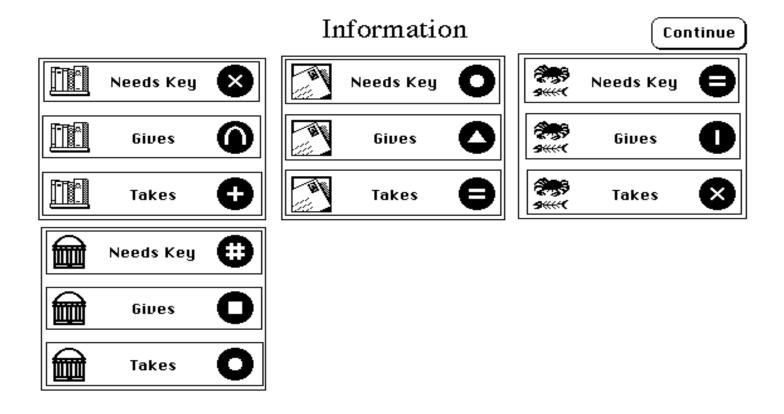
- An artificial domain
- All operators have the following form:

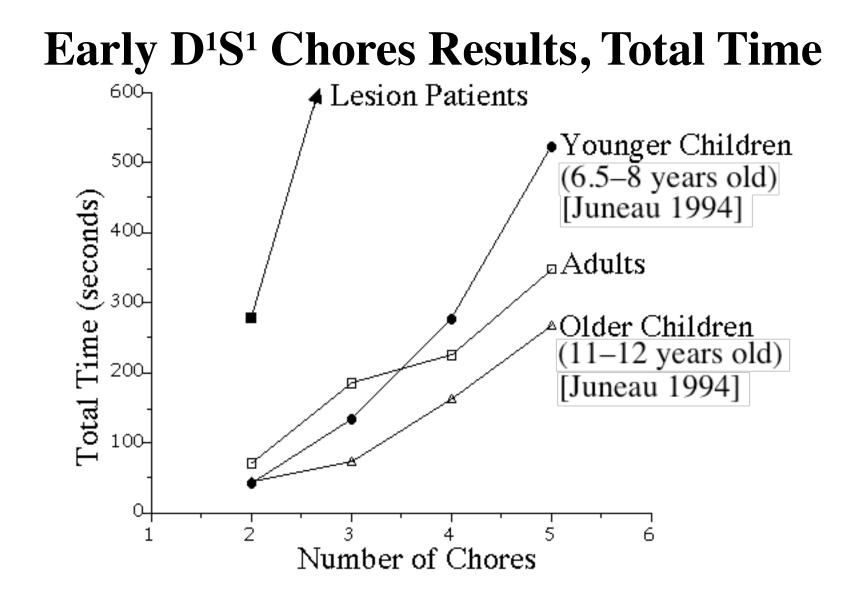
Operator:

Action:	A_i
Preconditions:	$\{I_i\}$
Add:	$\{G_i\}$
Delete:	$\{I_{i\text{-}1}\}$


D¹S¹ Complexity (Barrett & Weld 1993)

- Expected time to solve an instance of D¹S¹ rises **exponentially** with the number of goals for a "standard" total-order planner (*TOCL*).
- Expected time to solve an instance of D¹S¹ rises **linearly** with the number of goals for a "standard" partial-order planner (*POCL*).


Planning and the Frontal Lobes


- Frontal lobe lesion patients exhibit planning deficits.
- Several researchers have hypothesized that planning is a frontal lobe function (Grafman, Shallice, Levinson...)
- Human frontal lobes are not fully mature until approximately age 11.

The Chores Experiment

Operators in the Chores Experiment

Additional D¹S¹ Chores Results

Additional measures:

- "Item Info" viewing time
- analysis of "Undo" patterns

Additional data:

- Swarthmore College
- NIH/NINDS

	Total Time	Item Info Time	Undo Pattern
Normal Adults	linear	linear	partial order
Older Children	linear	exponential	partial order
Young Children	exponential	exponential	total order
Lesioned Adults	exponential	exponential	?

Analysis

- Task completion times for **normal adults** and **older children** on D¹S¹ tasks rise **linearly** with the number of goals.
- Task completion times for **younger children** on D¹S¹ tasks rise **non-linearly** with the number of goals.
- The performance **frontal lobe lesion patients** is poor; task completion times appear to rise **non-linearly** with the number of goals (but more data is needed).

Interpretation

- The performance of normal adults and older children is similar to that of *partial order* AI planning systems.
- The performance of younger children and frontal lobe lesion patients is similar to that of *total order* AI planning systems.

One explanation:

- Normal adults and older children represent partial plans as *partial* orders.
- Younger children and frontal lobe lesion patients represent partial plans as *total* orders.

Planet H

Planning Experiment Testbed for Humans

Goals:

- Support pure plan construction/modification; no conflation with plan execution (to allow better comparison to analytical results).
- Support construction of plans in any order.
- Support planning with durations.
- Simple text-based experiment configuration files.

Planet H Specifications

```
(defgoals "Pictures" "Bouquet")
```

```
(definventory "Invitation" "Money")
```

```
(defaction
 :name "Go Shopping For Wedding"
 :requires ("Money")
 :gives ("Dress" "Gift")
 :takes ("Money")
 :duration 1)
```

```
(show-final-inventory)
```

Planet H Screen

Initial Inventory Invitation, Money	The Plan
Goals	
Pictures, Bouquet	Final Inventory Invitation, Money
Actions	
Go Shopping For Wedding Keys: Money	
Gives: Dress, Gift	
Takes: Money	
Watch Marriage Ceremony	
Keys: Party, Program	
Gives: Reception Details	
Takes: Program	
Prepare For Wedding	
Keys: Dress	
Gives: Camera, Film	
Takes:	

Planet H Protocols

```
26 action chosen: Go to the Church
26 added action at step 1
26 current plan state:
 action: Go to the Church
 comment: Can't do it! (Missing Film, Camera, Dress)
 final inventory: Invitation, Money
40 action chosen: Go Shopping For Wedding
40 added action at step 1
40 current plan state:
 action: Go Shopping For Wedding
 comment: Got: Dress, Gift
          Gave up: Money
 action: Go to the Church
 comment: Can't do it! (Missing Film, Camera)
  final inventory: Gift, Dress, Invitation
```

Specific Conclusions

- Human planners with intact, fully developed frontal lobes appear to be partial-order planners.
- Human planners with damaged or immature frontal lobes appear to be total-order planners.
- Other dimensions of planning algorithms (e.g. systematicity) can be studied using a similar methodology.
- Planet H supports the generalization of this methodology to other aspects of planning.

General Conclusions

- AI results can guide the design of well-structured neuropsychology experiments that produce real results.
- Careful neuropsychological studies can help to guide AI.
- Performance curves provide one solid point of contact between disciplines.
- We face several challenges in combining results from AI with results from neuropsychology, but we stand to gain much if we meet these challenges.