
Biologically-Inspired Evolution of
Computer Programs:

Tag-based Modularity in
Genetic Programming

Lee Spector
Cognitive Science

Hampshire College

Presenting joint work with Brian Martin,
Kyle Harrington, and Thomas Helmuth

Outline

• Genetic programming (GP)

• Modularity in GP

• Tags

• Tag-based modularity in GP

Evolutionary Computation

Genetic Programming

• Evolutionary computing to produce
executable computer programs.

• Programs are tested by executing them.

!

!
"#$!

"%$! "&$!

! !
"'$! "($! ")$! "*$!

!
"+$! ",$!

"#$%! &%! '()*! +*,! -./0#$1.23#4*!)*5104#-)--! "%$!.%//01! 23,*,4%5! 3%&6! %4'! 1(&/23! 1257/,248!

9:;<!=>8!"#$!.%//!,?@32A(?(4/8!9:;B8!"&$!.%//01!),31/!1/3%,*+/C5,4(!5,46%*(!?(&+%4,1?!=9D>8!"'$!

E2#(3/01! 5,46%*(8! 9;B9! "($! F+(#G1+(A01! 5,46%*(8! 9;H:! ")$! I(%7&(55,(301! 5,46%*(8! 9;:J8! "*$!

K,5A(31/(3CL(?@(01! 5,46%*(8! 9;::8! "+$!F+(#G1+(A01! &2?#,4%/,248! 9;H:! ",$!F+(#G1+(ACMA%41!

&2?#,4%/,248!9NO:P!Q32?!=;>P!

!"#$%$&'$'()"$*)(+,$(-$#."$*&)&//"/$'(#0(1$#.&1$(-$&1!$(#.")$'"2.&102&/$013"1#0(1$%$
.&3"$"3")$'&,"!!=9D>P!
K,4&(!/+(!,4,/,%5!,4&(@/,24!2)!/+(!1/3%,*+/C5,4(!?(&+%4,1?8!?%4G!,4A(4/231!(4*%*('!

,4! ,?@32A,4*!%4'!&3(%/,4*!%5/(34%/,A(!'(1,*41P!Q,*73(1!H'C,! 1+2R!%!47?#(3!2)!%'',C

/,24%5! @3%&/,&%5! '(1,*41P! S+(! 2#1(11,24! R,/+! /+(! 1/3%,*+/C5,4(! ?(&+%4,1?! &24/,47('!

R(55!#(G24'!R+%/! ,/1!@3%&/,&%5!71()754(11!?(3,/('8! /2!#(&2?(!%!?%/+(?%/,&%5!@7TT5(!

,4! ,/1! 2R4! 3,*+/P! S+(! &+%55(4*(! &24/,47('! (A(4! %)/(3! /+(! ,4A(4/,24! 2)! /+(! @(3)(&/!

?(&+%4,1?!#G!I(%7&(55,(3!,4!9;:J!U!%!&(4/73G!%)/(3!.%//01!,4,/,%5!,4A(4/,24P!V7?(3C

271! 1/3%,*+/C5,4(! ?(&+%4,1?1! R(3(! @32@21('8! %1! (A,'(4/!)32?! /+(! JN! ',))(3(4/!

1/3%,*+/C5,4(!?(&+%4,1?1!1+2R4!,4!/+(!W2,*/!&%/%52*!=9N>!2)!('7&%/,24%5!?2'(51!"Q,*C

LipsonGECCO Humies

Lipson, H. 2004.Lipson, H. 2004.Lipson, H. 2004.

Lohn, Hornby and LindenSpector

Evolution, the Designer

“Darwinian evolution is itself a designer
worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29, 2005

Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
! (+ 4 (- Z 23)))

Mutating Lisp

Parent 1:!(+ (* X Y)
 (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! ! (* (- (* 2 Z) 1)
! ! (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! ! (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! ! (* (* X Y)
! ! (+ 14 (/ Y X))))

Recombining Lisp

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression

Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters

y = x3-0.2Evolving

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Target

(- (% (* 0.1
 (* X X))
 (- (% 0.1 0.1)
 (* X X)))
 0.1)

Best Program, Gen 0

-0.25

0

0.25

0.5

0.75

1

0

0.
25 0.
5

0.
75 1

Generation 0

Target

(- (* (* (% X 0.1)
 (* 0.1 X))
 (- X
 (% 0.1 X)))
 0.1)

Best Program, Gen 5

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 5

Target

(+ (- (- 0.1
 (- 0.1
 (- (* X X)
 (+ 0.1
 (- 0.1
 (* 0.1
 0.1))))))
 (* X
 (* (% 0.1
 (% (* (* (- 0.1 0.1)
 (+ X
 (- 0.1 0.1)))
 X)
 (+ X (+ (- X 0.1)
 (* X X)))))
 (+ 0.1 (+ 0.1 X)))))
 (* X X))

Best Program, Gen 12

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 12

Target

(- (- (* X (* X X))
 0.1)
 0.1)

Best Program, Gen 22

-0.25

0

0.25

0.5

0.75

0

0.
25 0.

5

0.
75 1

Generation 22

Target

• A programming language designed for programs
that evolve.

• Simplifies evolution of programs that may use:
 • multiple data types
 • subroutines (any architecture)
 • recursion and iteration
 • evolved control structures
 • evolved evolutionary mechanisms

• Primary feature that supports these capabilities
is ease of program self-modification.

Push

Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code,
exec, vector, matrix, quantum gate, [add more as
needed]

• Missing argument? NOOP

• Trivial syntax:
program → instruction | literal | (program*)

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

• Individuals make their own children.

• Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

• The machinery of reproduction and
diversification (i.e., the machinery of evolution)
evolves.

• Radical self-adaptation.

Autoconstructive
Evolution

Modularity is Everywhere

Modules in GP
• Automatically-defined functions (Koza).

• Automatically-defined macros (Spector).

• Architecture-altering operations (Koza).

• Module acquisition/encapsulation systems
(Kinnear, Roberts, many others).

• Push approach: instructions that can build/
execute modules with no changes to the
system’s representations or algorithms.

ADFs

• All programs in the population have the
same, pre-specified architecture

• Genetic operators respect that architecture

• (progn (defn adf0 (arg0 arg1) ...)
 (defn adf1 (arg0 arg1 arg2) ...)
 (.... (adf1 ...) (adf0 ...) ...))

Modules in Push
• Execution stack manipulation:

(3 exec.dup (1 integer.+))

Can be more complex, and has produced nice
results, but tricky in complex contexts

• Named modules:
(plus1 exec.define (1 integer.+)) ... plus1

More general but coordinating definitions and
references to arbitrarily many names is also
tricky and this never arises in evolution!

• How can we do better?

Evolution of Altruism

• Puzzles/challenges/results since
Darwin

• Explanations of altruism toward:

• Kin

• Reciprocating partners

• Agents with good reputations

Tag-Mediated Altruism

• Tags = arbitrary identifiers (Holland, 1995)

• Riolo et al. (Nature, 2001) showed that
altruism based only on tag similarity can
evolve in simple simulations.

• Roberts & Sherratt (Nature, 2002) claimed
that Riolo et al.’s result held only when
agents with identical tags were required to
donate to one another.

Tags and Tolerances

1. Donations when
∆tags ≤ tolerance

2. Reproductive
Tournaments

3. Mutation

Tolerance

Tag

Score

Genetic Stability
and Territorial Structure

• Varied mutation rate.

• Varied “interaction radius” within a linearly
structured population.

Genetic Stability
and Territorial Structure

Spector, L., and Klein, J. Genetic stability and territorial structure facilitate
the evolution of tag-mediated altruism. In Artificial Life.

Tags in Push
• Tags are integers embedded in instruction names

• Instructions like tag.exec.123 tag values

• Instructions like tagged.456 recall values by
closest matching tag

• If a single value has been tagged then all tag
references will recall values

• The number of tagged values can grow
incrementally over evolutionary time

Lawnmower Problem

• Used by Koza to demonstrate utility of ADFs
for scaling GP up to larger problems

>

Lawnmower Instructions

Lawnmower Effort

Dirt-Sensing, Obstacle-
Avoiding Robot Problem

Like the lawnmower problem but harder and
less uniform

>

DSOAR Instructions

DSOAR Effort

Conclusions

• Execution stack manipulation supports the
evolution of modular programs in many
situations

• Tag-based modules are more effective in
complex, non-uniform problem
environments

• Tag-based modules may help to evolve
complex software and solutions to unsolved
problems in the future

