Biologically-Inspired Evolution of
Computer Programes:

Tag-based Modularity in
Genetic Programming

Lee Spector
Cognitive Science
Hampshire College

Presenting joint work with Brian Martin,
Kyle Harrington, and Thomas Helmuth

Qutline

Genetic programming (GP)
Modularity in GP

Tags

Tag-based modularity in GP

Evolutionary Computation

Random Generation

v

Assessment —~ Solution

/N

Selection i~ Variation

Genetic Programming

® Evolutionary computing to produce
executable computer programs.

® Programs are tested by executing them.

GECCO Humies b | /!) gy Llpson

e |4
E
~ - -
. (b)

r

//\\@

2 T _mfghl_H_ _\

high
1 JaHm, HoH v, Hew e, HHH AN

2 Ju.238) -% 2
1 1 {HH us.e20 }

M, M,

Spector

Evolution, the Designer

“Darwinian evolution is itself a designer

worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29,2005

WHAT WOULD DARWIN SAY? | LEE SPECTOR

- . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that
complex and useful designs can indeed emerge from random Darwinian
processes.

Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Artificial assembly-like languages (Ray,Adami, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)
Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Mutating Lisp

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (* X Y)
(+ 4 (- Z 23)))

(+ (- (+ 2 2) 2)
(+ 4 (- 2 23)))

Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- Z2 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (* 2 2) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 Z) 1)
(+ 4 (- Z2 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X Y)
(+ 14 (/ Y X))))

Symbolic Regression

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.

Fitness = error (smaller is better)

GP Parameters

Maximum number of Generations: 5|1

Size of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: |7
Fitness-proportionate reproduction fraction: 0. |
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE

Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: |.2

3

Evolving y=x

-0.2

0.75

Best Program, Gen O

1
—o— Target

0.754 - <o (Generation 0

(* X X)) 05 -
(- (% 0.1 0.1)
(* X X))) 025
0.1)

Best Program, Gen 5

—o— Target

........ o Generation 5

(- (* (* (% X 0.1)
(* 0.1 X))
(_ X 0.25 -
(% 0.1 X)))
0.1)

Best Program, Gen |2

(+ (- (- 0.1
(- 0.1 —o— Target
(- (* X X)
(+ 0.1 e o (Generation 12
(- 0.1 :
(* 0.1
0.1))))))
(* X
(* (% 0.1
(% (* (* (- 0.1 0.1)
(+ X
(- 0.1 0.1)))
X)
(+ X (+ (- X 0.1)
(* X X)))))
(+ 0.1 (+ 0.1 X)))))
(* X X))

Best Program, Gen 22

(- (- (* X (* X X))
0.1)
0.1)

Push

® A programming language designed for programs
that evolve.

® Simplifies evolution of programs that may use:

* multiple data types

* subroutines (any architecture)
recursion and iteration

* evolved control structures

* evolved evolutionary mechanisms

® Primary feature that supports these capabilities
is ease of program self-modification.

Push

Stack-based postfix language with one stack per type

Types include: integer, float, Boolean, name, code,

exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument? NOOP

Trivial syntax:
program — instruction | literal | (program™)

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =
Ma’th _|_7) /7 x, >7 <7
(INTEGER and FLOAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT
Control manipulation | DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

Autoconstructive
Evolution

Individuals make their own children.

Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

The machinery of reproduction and

diversification (i.e., the machinery of evolution)
evolves.

Radical self-adaptation.

Modularity is Everywhere

Modules in GP

Automatically-defined functions (Koza).

Automatically-defined macros (Spector).

Architecture-altering operations (Koza).

Module acquisition/encapsulation systems
(Kinnear, Roberts, many others).

Push approach: instructions that can build/
execute modules with no changes to the
system'’s representations or algorithms.

ADFs

® All programs in the population have the
same, pre-specified architecture

® Genetic operators respect that architecture

® (progn (defn adf0 (arg0 argl) ...)
(defn adfl (arg0 argl arg2?)
(eo.o. (adfl ...) (adf0 ...) ...))

Modules in Push

Execution stack manipulation:

(3 exec.dup (1 integer.+))

Can be more complex, and has produced nice
results, but tricky in complex contexts

Named modules:

(plusl exec.define (1 integer.+)) ... plusl
More general but coordinating definitions and
references to arbitrarily many names is also
tricky and this never arises in evolution!

® How can we do better?

Evolution of Altruism

® Puzzles/challenges/results since
Darwin

® Explanations of altruism toward:
e Kin
® Reciprocating partners

® Agents with good reputations

Tag-Mediated Altruism

® Tags = arbitrary identifiers (Holland, 1995)

® Riolo et al. (Nature, 2001) showed that
altruism based only on tag similarity can
evolve in simple simulations.

® Roberts & Sherratt (Nature, 2002) claimed
that Riolo et al’s result held only when
agents with identical tags were required to
donate to one another.

Tags and lolerances

Tag

Tolerance
. Donations when Score
Atags < tolerance

. Reproductive
Tournaments

. Mutation

Genetic Stability
and Territorial Structure

® Varied mutation rate.

® Varied “interaction radius” within a linearly
structured population.

Genetic Stability
and Territorial Structure

0.01 _
Mutation rate

Spector, L., and Klein, J. Genetic stability and territorial structure facilitate
the evolution of tag-mediated altruism. In Artificial Life.

Tags in Push

Tags are integers embedded in instruction names

Instructions like tag.exec.|23 tag values

Instructions like tagged.456 recall values by
closest matching tag

If a single value has been tagged then all tag
references will recall values

The number of tagged values can grow
incrementally over evolutionary time

Lawnmower Problem

® Used by Koza to demonstrate utility of ADFs
for scaling GP up to larger problems

Lawnmower Instructions

Condition | Instructions

Basic | left, mow, v8a, frog, R.s

Tag | left, mow, v8a, frog, R,s,
tag.exec.[1000], tagged.[1000]
left, mow, v8a, frog, Rus,
exec.dup, exec.pop, exec.rot,
exec.swap, exec.k, exec.s, exec.y

Rocks-Cluster Physical View for
Wed, 02 Mar 2011 07:28:18 -0500

(Get Fresh Data)

Full View

Grid > Rocks-Cluster > [--choose a Node |4

Verbosity level (Lower is more Total CPUs: 158
compact):

302010 GB

flylocal 0.11

cpu: 1.56G (8)
mem: 15.68G

Rocks-Cluster cluster - Physical View | Columns [5 5]

Total Disk: 3798.2 GB
Most Full Disk: compute-1-11.ocal (77.2%
Used)

Total Memory: 229.5

“Racki W Rack2 M Recks [Reckd

compute- 4.00
1=

16.]local

cpu: 2.93G (4)
mem: 7.77G

compute- 3,97
1=

15 local

cpu: 2.93G (4)
mem: 7.77G

compute- 3,99

cpu: 2.93G (4)
mem: 7.77G

compute- 2,00
2.

10.]local

cpu: 2.93G (2)
mem: 3.86G

compute- 2,00
2-9 local

cpu: 2.93G (2)
mem: 3.86G

computﬁ' 2.00
2-8.local

cpu: 2.93G (2)
mem: 3.86G

compute- 2,12

compute- 2.00
3-3local

cpu: 1.95G (2)
mem: 3.87G

compute- 49.12
4-2 local

cpu: 1.86G (48)
mem: 31.42G

compute- 16.04
4-1.]ocal

cpu: 2.21G (16)
mem: 23.53G

Lawnmower Effort

500000

+ 400000

300000

—
o
=
w
'«
c
90
et
©
ot
=
Q
§

100000

l T 1 1 1 l 1] 1 |l l] |l 1 l l 1] 1 | l] 1 I Ll l T 1 1

Problem Size

Dirt-Sensing, Obstacle-
Avoiding Robot Problem

Like the lawnmower problem but harder and
less uniform

DSOAR Instructions

Condition

Instructions

Basic

if-dirty, if-obstacle, left, mop, v8a, frog, Rs

Tag

if-dirty, if-obstacle, left, mop, v8a, frog, R.s,
tag.exec.[1000], tagged.[1000]

if-dirty, if-obstacle, left, mop, v8a, frog, R.s,
exec.dup, exec.pop, exec.rot,
exec.swap, exec.k, exec.s, exec.y

DSOAR Effort

=
@)
=
L
®©
c
O
*(—u‘
—
>
Q
=
@)
@)

T LI B B | L I B | LI B LI L L L L L L L
| | I I I I |

——
-

Problem Size

Conclusions

® Execution stack manipulation supports the
evolution of modular programs in many
situations

® Tag-based modules are more effective in
complex, non-uniform problem
environments

® Tag-based modules may help to evolve
complex software and solutions to unsolved
problems in the future

yEARCH

NSF Web Site

- National Science Foundation

i i

HOME | FUNDING | AWARDS | DISCOVERIES | NEWS | PUBLICATIONS | STATISTICS | ABOUT | FastLane

Award Abstract #1017817

RI: Small: RUI: Evolution of Robustly Intelligent Computational
Systems

Search Awards
Recent Awards

Presidential and Honorary
Awards

About Awards

Grant Policy Manual
Grant General Conditions

Cooperative Agreement
Conditions

Special Conditions

Federal Demonstration
Partnership

Policy Office Website

NSF Org:

Initial Amendment Date:
Latest Amendment Date:
Award Number:

Award Instrument:

Program Manager:

Start Date:

Expires:

Awarded Amount to Date:
Investigator(s):

Sponsor:

I1S
Division of Information & Intelligent Systems

August 19, 2010

August 19, 2010

1017817

Standard Grant

Sven G. Koenig

I1S Division of Information & Intelligent Systems

CSE Directorate for Computer & Information Science &
Engineering

September 1, 2010

August 31, 2013 (Estimated)

$423288

Lee Spector Ispector@hampshire.edu (Principal Investigator)

Hampshire Coll

