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Overview

• Modularity

• Identity

• Evolving computer programs

• Evolving modular programs

• Implications
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Modularity is Everywhere



http://equitygreen.typepad.com/blog/2007/08/hybrid-seattle-.html#more



http://www.flickrfotos.com/modular-44-plastic-coffee-table-design/

http://www.flickrfotos.com/modular-44-plastic-coffee-table-design/
http://www.flickrfotos.com/modular-44-plastic-coffee-table-design/


http://talkinterior.com/interior-design-vita-minimalist-modular-home/

http://talkinterior.com/interior-design-vita-minimalist-modular-home/
http://talkinterior.com/interior-design-vita-minimalist-modular-home/


http://www.e-potpourri.com/index.php/2008/02/02/octopus-studios-silverfish-aquarium-boasts-modern-modular-design/

http://www.e-potpourri.com/index.php/2008/02/02/octopus-studios-silverfish-aquarium-boasts-modern-modular-design/
http://www.e-potpourri.com/index.php/2008/02/02/octopus-studios-silverfish-aquarium-boasts-modern-modular-design/


http://wyss.harvard.edu/viewevent/37/wyss-seminar-series-kasper-stoy
http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=953

http://www.engadget.com/2005/03/26/m-tran-self-reconfigurable-modular-robot/
http://www.hizook.com/blog/2012/01/16/ted-talks-about-robots-and-robotics-part-1

http://wyss.harvard.edu/viewevent/37/wyss-seminar-series-kasper-stoy
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http://www.synthtopia.com/content/2007/04/04/moog-55-modular-synthesizer/

http://www.synthtopia.com/content/2007/04/04/moog-55-modular-synthesizer/
http://www.synthtopia.com/content/2007/04/04/moog-55-modular-synthesizer/


http://mappery.com/map-of/Tokyo-Metro-Map

http://mappery.com/map-of/Tokyo-Metro-Map
http://mappery.com/map-of/Tokyo-Metro-Map


Modularity in Software

• Pervasive and widely acknowledged to be 
essential

• Modules may be functions, procedures, 
methods, classes, data structures, interfaces, etc.

• Modularity measures include coupling, 
cohesion, encapsulation, composability, etc.



http://en.wikipedia.org/wiki/File:Sa-fern.jpg

http://en.wikipedia.org/wiki/File:Sa-fern.jpg
http://en.wikipedia.org/wiki/File:Sa-fern.jpg


http://a-z-animals.com/animals/centipede/

http://a-z-animals.com/animals/centipede/
http://a-z-animals.com/animals/centipede/


Cognitive Science
• Long history of modularity theories: Gall, ... 

Simon, ... Fodor, ... Cermak and Craik, ... 
Gardner, ... Jackendoff, ... Grafman, ...

• Simon’s “nearly decomposable systems”

• Fodor’s features: domain specific, mandatory, fast, 
encapsulated, fixed architecture, characteristic 
patterns of ontogeny and failure

• Central vs. input systems

• Modest vs. massive

http://en.wikipedia.org/wiki/Franz_Joseph_Gall
http://en.wikipedia.org/wiki/Franz_Joseph_Gall




Questions

• Why are modules everywhere?

• What are they good for?

• Where do they come from?

• What conditions permit or facilitate their 
emergence?



Identity

• How are modules recognized by other 
components of a system?

• Where do module identities come from?

• How can module identity co-evolve with 
modular architecture?



Holland’s Tags

• Initially arbitrary identifiers that come to 
have meaning over time

• Appear to be present in some form in many 
different kinds of complex adaptive systems

• Examples range from immune systems to 
armies on a battlefield

• A general tool for the support of emergent 
complexity



Evolution of Altruism

• Puzzles/challenges/results since 
Darwin

• Explanations of altruism toward:

• Kin

• Reciprocating partners

• Agents with good reputations



Tag-Based Altruism

• Individuals have tags and tag-difference 
tolerances

• Donate when ∆tags ≤ tolerance

• Riolo et al. (Nature, 2001) showed that tag-
based altruism can evolve; Roberts & 
Sherratt (Nature, 2002) claimed it would not 
evolve under more realistic conditions



Spector, L., and Klein, J. Genetic stability and territorial structure facilitate 
the evolution of tag-mediated altruism. In Artificial Life.



Evolutionary Computation



100100010101  001101001110  100100101000  100111001011  110111110111 

 
111110010001  010101010011  101101000101  100100011101  110101010010  

110000011111  000111010100  110101011001  111010001001  110100100110 

 
101111010110  110010110101  111101001011  101101111010  000011100111 

 
000111100011  010110001000  111001001110  101010111111  011011011100 

 
111100100011  011000100110  111001001110  001001101100  100100100000  

100001101011  000001000011  101110101100  100001110100  010011010101 

 
010000100110  100101101010  010111000100  011101100101  000010011111 

 
100001010010  010111101111  101101110100  010111011001  011001010110 



Traditional Genetic 
Algorithms

• Interesting dynamics

• Rarely solve interesting hard problems



Genetic Programming

• Evolutionary computing to produce 
executable computer programs.

• Programs are tested by executing them.
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Fig. 6. Some key straight-line mechanisms: (a) Watt’s original rack and sector solution, 

1782 [], (b) Watt improvement, 1784, (c) Watt’s first straight-line linkage mechanism [15], (d) 

Robert’s linkage, 1841 (e) Chebyshev’s linkage, 1867 (f) Peaucellier’s linkage, 1873, (g) 

Silverster-Kempe’s linkage, 1877, (h) Chebyshev’s combination, 1867 (i) Chebyshev-Evans 

combination, 1907. From [8]. 

yet I am more proud of the parallel motion than of any other mechanical invention I 
have ever made” [15]. 

Since the initial inception of the straight-line mechanism, many inventors engaged 

in improving and creating alternative designs. Figures 6d-i show a number of addi-

tional practical designs. The obsession with the straight-line mechanism continued 

well beyond what its practical usefulness merited, to become a mathematical puzzle 

in its own right. The challenge continued even after the invention of the perfect 

mechanism by Peaucellier in 1873 – a century after Watt’s initial invention. Numer-

ous straight-line mechanisms were proposed, as evident from the 39 different 

straight-line mechanisms shown in the Voigt catalog [19] of educational models (Fig-

LipsonGECCO Humies

Lipson, H. 2004.Lipson, H. 2004.Lipson, H. 2004.

Lohn, Hornby and LindenSpector



Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).



! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
!    (+ 4 (- Z 23)))

Mutating Lisp



Parent 1:!(+ (* X Y)
          (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! !       (* (- (* 2 Z) 1)
! !          (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! !       (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! !       (* (* X Y)
! !          (+ 14 (/ Y X))))

Recombining Lisp



Given a set of data points, evolve a program 
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression



Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method:  RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters



y = x3-0.2Evolving
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(- (% (* 0.1
         (* X X))
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         (* X X)))
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Best Program, Gen 0
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Best Program, Gen 5
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(+ (- (- 0.1
         (- 0.1
            (- (* X X)
               (+ 0.1
                  (- 0.1
                     (* 0.1
                        0.1))))))
      (* X
         (* (% 0.1
               (% (* (* (- 0.1 0.1)
                        (+ X
                           (- 0.1 0.1)))
                     X)
                  (+ X (+ (- X 0.1)
                          (* X X)))))
            (+ 0.1 (+ 0.1 X)))))
   (* X X))

Best Program, Gen 12
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ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008
GOLD MEDAL



Goal

• Find finite algebra terms that have certain special 
properties

• For decades there was no way to produce these 
terms in general, short of exhaustive search

• Current best methods produce enormous terms



Significance, Time



Significance, Time



Significance, Size

(for A1)



Significance, Size

(for A1)



Humies 2004
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Evolving Modular Programs
With “automatically defined functions”

• All programs in the population have the 
same, pre-specified architecture

• Genetic operators respect that architecture

• Complicated, brittle, limited... 

• Architecture-altering operations: more so



Evolving Modular Programs
With “execution stack manipulation”

• Code queued for execution is stored on an 
“execution stack”

• Allow programs to duplicate and manipulate 
code that on the stack

• Simple types and uses of modules can be 
evolved easily

• Does not scale well to large/complex systems



• Include instructions that tag code (modules)

• Include instructions that recall and execute 
modules by closest matching tag

• If a single module has been tagged then all tag 
references will recall modules

• The number of tagged modules can grow 
incrementally over evolutionary time

Evolving Modular Programs
With tags



Dirt-Sensing, Obstacle-
Avoiding Robot Problem

>



DSOAR Instructions
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Evolved DSOAR 
Architecture (in one environment)
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Evolved DSOAR 
Architecture (in another environment)
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Conclusions

• Tags provide an effective mechanism for the 
evolution of modular programs that solve 
difficult problems

• Tags may provide or explain mechanisms that 
support the evolution of modularity in a range 
of other systems, both natural and artificial


