
The Evolution of
Identity and Modularity

in Nature and Computation
Lee Spector

Cognitive Science
Hampshire College

Oberlin class of 1984
(Philosophy, TIMARA, WOBC, Tank Coop, ...)

Overview

• Modularity

• Identity

• Evolving computer programs

• Evolving modular programs

• Implications

Hampshire College

• Undergraduate only

• Experimental/experimenting

• Five Colleges consortium

• No grades, credits, majors, departments, ...

• School of Cognitive Science

12/03/2006 05:17 PMSNL Archives

Page 1 of 1http://snl.jt.org/photo.php?t=2&i=296&d=0

Modularity is Everywhere

http://equitygreen.typepad.com/blog/2007/08/hybrid-seattle-.html#more

http://www.flickrfotos.com/modular-44-plastic-coffee-table-design/

http://www.flickrfotos.com/modular-44-plastic-coffee-table-design/
http://www.flickrfotos.com/modular-44-plastic-coffee-table-design/

http://talkinterior.com/interior-design-vita-minimalist-modular-home/

http://talkinterior.com/interior-design-vita-minimalist-modular-home/
http://talkinterior.com/interior-design-vita-minimalist-modular-home/

http://www.e-potpourri.com/index.php/2008/02/02/octopus-studios-silverfish-aquarium-boasts-modern-modular-design/

http://www.e-potpourri.com/index.php/2008/02/02/octopus-studios-silverfish-aquarium-boasts-modern-modular-design/
http://www.e-potpourri.com/index.php/2008/02/02/octopus-studios-silverfish-aquarium-boasts-modern-modular-design/

http://wyss.harvard.edu/viewevent/37/wyss-seminar-series-kasper-stoy
http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=953

http://www.engadget.com/2005/03/26/m-tran-self-reconfigurable-modular-robot/
http://www.hizook.com/blog/2012/01/16/ted-talks-about-robots-and-robotics-part-1

http://wyss.harvard.edu/viewevent/37/wyss-seminar-series-kasper-stoy
http://wyss.harvard.edu/viewevent/37/wyss-seminar-series-kasper-stoy
http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=953
http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=953
http://www.engadget.com/2005/03/26/m-tran-self-reconfigurable-modular-robot/
http://www.engadget.com/2005/03/26/m-tran-self-reconfigurable-modular-robot/
http://www.hizook.com/blog/2012/01/16/ted-talks-about-robots-and-robotics-part-1
http://www.hizook.com/blog/2012/01/16/ted-talks-about-robots-and-robotics-part-1

http://www.synthtopia.com/content/2007/04/04/moog-55-modular-synthesizer/

http://www.synthtopia.com/content/2007/04/04/moog-55-modular-synthesizer/
http://www.synthtopia.com/content/2007/04/04/moog-55-modular-synthesizer/

http://mappery.com/map-of/Tokyo-Metro-Map

http://mappery.com/map-of/Tokyo-Metro-Map
http://mappery.com/map-of/Tokyo-Metro-Map

Modularity in Software

• Pervasive and widely acknowledged to be
essential

• Modules may be functions, procedures,
methods, classes, data structures, interfaces, etc.

• Modularity measures include coupling,
cohesion, encapsulation, composability, etc.

http://en.wikipedia.org/wiki/File:Sa-fern.jpg

http://en.wikipedia.org/wiki/File:Sa-fern.jpg
http://en.wikipedia.org/wiki/File:Sa-fern.jpg

http://a-z-animals.com/animals/centipede/

http://a-z-animals.com/animals/centipede/
http://a-z-animals.com/animals/centipede/

Cognitive Science
• Long history of modularity theories: Gall, ...

Simon, ... Fodor, ... Cermak and Craik, ...
Gardner, ... Jackendoff, ... Grafman, ...

• Simon’s “nearly decomposable systems”

• Fodor’s features: domain specific, mandatory, fast,
encapsulated, fixed architecture, characteristic
patterns of ontogeny and failure

• Central vs. input systems

• Modest vs. massive

http://en.wikipedia.org/wiki/Franz_Joseph_Gall
http://en.wikipedia.org/wiki/Franz_Joseph_Gall

Questions

• Why are modules everywhere?

• What are they good for?

• Where do they come from?

• What conditions permit or facilitate their
emergence?

Identity

• How are modules recognized by other
components of a system?

• Where do module identities come from?

• How can module identity co-evolve with
modular architecture?

Holland’s Tags

• Initially arbitrary identifiers that come to
have meaning over time

• Appear to be present in some form in many
different kinds of complex adaptive systems

• Examples range from immune systems to
armies on a battlefield

• A general tool for the support of emergent
complexity

Evolution of Altruism

• Puzzles/challenges/results since
Darwin

• Explanations of altruism toward:

• Kin

• Reciprocating partners

• Agents with good reputations

Tag-Based Altruism

• Individuals have tags and tag-difference
tolerances

• Donate when ∆tags ≤ tolerance

• Riolo et al. (Nature, 2001) showed that tag-
based altruism can evolve; Roberts &
Sherratt (Nature, 2002) claimed it would not
evolve under more realistic conditions

Spector, L., and Klein, J. Genetic stability and territorial structure facilitate
the evolution of tag-mediated altruism. In Artificial Life.

Evolutionary Computation

100100010101 001101001110 100100101000 100111001011 110111110111

111110010001 010101010011 101101000101 100100011101 110101010010

110000011111 000111010100 110101011001 111010001001 110100100110

101111010110 110010110101 111101001011 101101111010 000011100111

000111100011 010110001000 111001001110 101010111111 011011011100

111100100011 011000100110 111001001110 001001101100 100100100000

100001101011 000001000011 101110101100 100001110100 010011010101

010000100110 100101101010 010111000100 011101100101 000010011111

100001010010 010111101111 101101110100 010111011001 011001010110

Traditional Genetic
Algorithms

• Interesting dynamics

• Rarely solve interesting hard problems

Genetic Programming

• Evolutionary computing to produce
executable computer programs.

• Programs are tested by executing them.

(b)

(a) (c)

(d) (e) (f) (g)

(h) (i)

Fig. 6. Some key straight-line mechanisms: (a) Watt’s original rack and sector solution,

1782 [], (b) Watt improvement, 1784, (c) Watt’s first straight-line linkage mechanism [15], (d)

Robert’s linkage, 1841 (e) Chebyshev’s linkage, 1867 (f) Peaucellier’s linkage, 1873, (g)

Silverster-Kempe’s linkage, 1877, (h) Chebyshev’s combination, 1867 (i) Chebyshev-Evans

combination, 1907. From [8].

yet I am more proud of the parallel motion than of any other mechanical invention I
have ever made” [15].

Since the initial inception of the straight-line mechanism, many inventors engaged

in improving and creating alternative designs. Figures 6d-i show a number of addi-

tional practical designs. The obsession with the straight-line mechanism continued

well beyond what its practical usefulness merited, to become a mathematical puzzle

in its own right. The challenge continued even after the invention of the perfect

mechanism by Peaucellier in 1873 – a century after Watt’s initial invention. Numer-

ous straight-line mechanisms were proposed, as evident from the 39 different

straight-line mechanisms shown in the Voigt catalog [19] of educational models (Fig-

LipsonGECCO Humies

Lipson, H. 2004.Lipson, H. 2004.Lipson, H. 2004.

Lohn, Hornby and LindenSpector

Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
! (+ 4 (- Z 23)))

Mutating Lisp

Parent 1:!(+ (* X Y)
 (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! ! (* (- (* 2 Z) 1)
! ! (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! ! (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! ! (* (* X Y)
! ! (+ 14 (/ Y X))))

Recombining Lisp

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression

Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters

y = x3-0.2Evolving

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Target

(- (% (* 0.1
 (* X X))
 (- (% 0.1 0.1)
 (* X X)))
 0.1)

Best Program, Gen 0

-0.25

0

0.25

0.5

0.75

1

0

0.
25 0.
5

0.
75 1

Generation 0

Target

(- (* (* (% X 0.1)
 (* 0.1 X))
 (- X
 (% 0.1 X)))
 0.1)

Best Program, Gen 5

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 5

Target

(+ (- (- 0.1
 (- 0.1
 (- (* X X)
 (+ 0.1
 (- 0.1
 (* 0.1
 0.1))))))
 (* X
 (* (% 0.1
 (% (* (* (- 0.1 0.1)
 (+ X
 (- 0.1 0.1)))
 X)
 (+ X (+ (- X 0.1)
 (* X X)))))
 (+ 0.1 (+ 0.1 X)))))
 (* X X))

Best Program, Gen 12

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 12

Target

(- (- (* X (* X X))
 0.1)
 0.1)

Best Program, Gen 22

-0.25

0

0.25

0.5

0.75

0

0.
25 0.

5

0.
75 1

Generation 22

Target

Genetic Programming for Finite Algebras

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

David M. Clark
Mathematics

SUNY New Paltz
New Paltz, NY 12561

clarkd@newpaltz.edu

Ian Lindsay
Hampshire College
Amherst, MA 01002

iml04@hampshire.edu

Bradford Barr
Hampshire College
Amherst, MA 01002

bradford.barr@gmail.com

Jon Klein
Hampshire College
Amherst, MA 01002
jk@artificial.com

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008
GOLD MEDAL

Goal

• Find finite algebra terms that have certain special
properties

• For decades there was no way to produce these
terms in general, short of exhaustive search

• Current best methods produce enormous terms

Significance, Time

Significance, Time

Significance, Size

(for A1)

Significance, Size

(for A1)

Humies 2004
GOLD MEDAL

Evolving Modular Programs
With “automatically defined functions”

• All programs in the population have the
same, pre-specified architecture

• Genetic operators respect that architecture

• Complicated, brittle, limited...

• Architecture-altering operations: more so

Evolving Modular Programs
With “execution stack manipulation”

• Code queued for execution is stored on an
“execution stack”

• Allow programs to duplicate and manipulate
code that on the stack

• Simple types and uses of modules can be
evolved easily

• Does not scale well to large/complex systems

• Include instructions that tag code (modules)

• Include instructions that recall and execute
modules by closest matching tag

• If a single module has been tagged then all tag
references will recall modules

• The number of tagged modules can grow
incrementally over evolutionary time

Evolving Modular Programs
With tags

Dirt-Sensing, Obstacle-
Avoiding Robot Problem

>

DSOAR Instructions

DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

1x108

2x108

3x108

4x108

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec

DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

2x106

4x106

6x106

8x106

1x107

1.2x107

1.4x107

1.6x107

C
om

pu
ta

tio
na

l E
ffo

rt

Tag
Exec

Evolved DSOAR
Architecture (in one environment)

Module0

Module1

3 Module2

1

Module4
1

Module3
2 5

Module7

2 2 3

1

Module8

3

2 4

3 8

Module5

3 9

Module6

1 5

Evolved DSOAR
Architecture (in another environment)

Module0

Module2

1

Module9

1

Module10

1

Module11

1

Module12
1

Module3
2 8

Module13

1 8

Module14

2 6

Module4

2 7

2 6

Module5

3 8

1 1

1 2

Conclusions

• Tags provide an effective mechanism for the
evolution of modular programs that solve
difficult problems

• Tags may provide or explain mechanisms that
support the evolution of modularity in a range
of other systems, both natural and artificial

