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Outline

• Finite automata (with self regulation)

• Evolutionary computing

• Genomes = computer programs

• Environmentally mediated expression



Computers Rules Languages

Quantum 
Computers

Schrödinger’s 
Equation

?

Turing Machines α→β, unrestricted
Recursively 
Enumerable

Linear Bounded 
Automata α→β, |β|≥|α| Context-Sensitive

Pushdown 
Automata

A→α,α∈(V∪T)∗ Context-Free

Finite Automata A→wB, A→w Regular

?



Human Finite Automaton

• Random word & target

• Red & blue words & targets

• Choose which of 2 words based on what 
you’ve heard

• Choose any word based on what you’ve 
heard
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Evolutionary Computation



100100010101  001101001110  100100101000  100111001011  110111110111 

 
111110010001  010101010011  101101000101  100100011101  110101010010  

110000011111  000111010100  110101011001  111010001001  110100100110 

 
101111010110  110010110101  111101001011  101101111010  000011100111 

 
000111100011  010110001000  111001001110  101010111111  011011011100 

 
111100100011  011000100110  111001001110  001001101100  100100100000  

100001101011  000001000011  101110101100  100001110100  010011010101 

 
010000100110  100101101010  010111000100  011101100101  000010011111 

 
100001010010  010111101111  101101110100  010111011001  011001010110 



Genetic Programming

• Evolutionary computing to produce 
executable computer programs.

• Programs are tested by executing them.



“Gene”tic Programming

• Mapping between program elements 
(“genes”) and behavior can be complex

• Some code elements may be “introns”

• Some code elements may act conditionally

• Some code elements may regulate the 
action of other code elements
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Fig. 6. Some key straight-line mechanisms: (a) Watt’s original rack and sector solution, 

1782 [], (b) Watt improvement, 1784, (c) Watt’s first straight-line linkage mechanism [15], (d) 

Robert’s linkage, 1841 (e) Chebyshev’s linkage, 1867 (f) Peaucellier’s linkage, 1873, (g) 

Silverster-Kempe’s linkage, 1877, (h) Chebyshev’s combination, 1867 (i) Chebyshev-Evans 

combination, 1907. From [8]. 

yet I am more proud of the parallel motion than of any other mechanical invention I 
have ever made” [15]. 

Since the initial inception of the straight-line mechanism, many inventors engaged 

in improving and creating alternative designs. Figures 6d-i show a number of addi-

tional practical designs. The obsession with the straight-line mechanism continued 

well beyond what its practical usefulness merited, to become a mathematical puzzle 

in its own right. The challenge continued even after the invention of the perfect 

mechanism by Peaucellier in 1873 – a century after Watt’s initial invention. Numer-

ous straight-line mechanisms were proposed, as evident from the 39 different 

straight-line mechanisms shown in the Voigt catalog [19] of educational models (Fig-
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Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).



! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
!    (+ 4 (- Z 23)))

Mutating Lisp



Parent 1:!(+ (* X Y)
          (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! !       (* (- (* 2 Z) 1)
! !          (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! !       (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! !       (* (* X Y)
! !          (+ 14 (/ Y X))))

Recombining Lisp



Given a set of data points, evolve a program 
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression



Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method:  RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters



y = x3-0.2Evolving
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         (* X X))
      (- (% 0.1 0.1)
         (* X X)))
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Best Program, Gen 0
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(+ (- (- 0.1
         (- 0.1
            (- (* X X)
               (+ 0.1
                  (- 0.1
                     (* 0.1
                        0.1))))))
      (* X
         (* (% 0.1
               (% (* (* (- 0.1 0.1)
                        (+ X
                           (- 0.1 0.1)))
                     X)
                  (+ X (+ (- X 0.1)
                          (* X X)))))
            (+ 0.1 (+ 0.1 X)))))
   (* X X))

Best Program, Gen 12
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ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008
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Goal

• Find finite algebra terms that have certain special 
properties

• For decades there was no way to produce these 
terms in general, short of exhaustive search

• Current best methods produce enormous terms



Significance, Time



Significance, Time



Significance, Size

(for A1)



Significance, Size

(for A1)



Human Competitive?
• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on 
significant problems, providing benefits of several 
orders of magnitude with respect to search speed 
and result size

• Because there were no prior methods for 
generating practical terms in practical amounts of 
time, GP has provided the first solution to a 
previously open problem in the field
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Evolution, the Designer

“Darwinian evolution is itself a designer 
worthy of significant respect, if not religious 
devotion.” Boston Globe OpEd, Aug 29, 2005



Dirt-Sensing, Obstacle-
Avoiding Robot Problem

>



DSOAR Instructions
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Evolved DSOAR 
Architecture (in one environment)
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Evolved DSOAR 
Architecture (in another environment)
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Autoconstructive Evolution

• Individual programs make their own children

• Hence they control their genetic representations, 
mutation rates, sexuality, reproductive timing, etc.

• The machinery of reproduction and diversification 
(i.e., the machinery of evolution) evolves

• Selection may favor reactive and developmental 
stability



SwarmEvolve 2



Conclusions

• Genetic programming is a powerful problem-
solving technique based loosely on biological 
evolution

• In genetic programming the genome is a 
reactive system with many features of 
biological genetic systems that are only now 
becoming well appreciated, including self 
regulation and complex interactions between 
the environment and elements of the genome


