
Genomes as Reactive Systems:
A Computational Perspective

Lee Spector
Cognitive Science

Hampshire College

Outline

• Finite automata (with self regulation)

• Evolutionary computing

• Genomes = computer programs

• Environmentally mediated expression

Computers Rules Languages

Quantum
Computers

Schrödinger’s
Equation

?

Turing Machines α→β, unrestricted
Recursively
Enumerable

Linear Bounded
Automata α→β, |β|≥|α| Context-Sensitive

Pushdown
Automata

A→α,α∈(V∪T)∗ Context-Free

Finite Automata A→wB, A→w Regular

?

Human Finite Automaton

• Random word & target

• Red & blue words & targets

• Choose which of 2 words based on what
you’ve heard

• Choose any word based on what you’ve
heard

Human Finite Automaton

• Random word & target

• Red & blue words & targets

• Choose which of 2 words based on what
you’ve heard

• Choose any word based on what you’ve
heard

Human Finite Automaton

• Random word & target

• Red & blue words & targets

• Choose which of 2 words based on what
you’ve heard

• Choose any word based on what you’ve
heard

Human Finite Automaton

• Random word & target

• Red & blue words & targets

• Choose which of 2 words based on what
you’ve heard

• Choose any word based on what you’ve
heard

Evolutionary Computation

100100010101 001101001110 100100101000 100111001011 110111110111

111110010001 010101010011 101101000101 100100011101 110101010010

110000011111 000111010100 110101011001 111010001001 110100100110

101111010110 110010110101 111101001011 101101111010 000011100111

000111100011 010110001000 111001001110 101010111111 011011011100

111100100011 011000100110 111001001110 001001101100 100100100000

100001101011 000001000011 101110101100 100001110100 010011010101

010000100110 100101101010 010111000100 011101100101 000010011111

100001010010 010111101111 101101110100 010111011001 011001010110

Genetic Programming

• Evolutionary computing to produce
executable computer programs.

• Programs are tested by executing them.

“Gene”tic Programming

• Mapping between program elements
(“genes”) and behavior can be complex

• Some code elements may be “introns”

• Some code elements may act conditionally

• Some code elements may regulate the
action of other code elements

(b)

(a) (c)

(d) (e) (f) (g)

(h) (i)

Fig. 6. Some key straight-line mechanisms: (a) Watt’s original rack and sector solution,

1782 [], (b) Watt improvement, 1784, (c) Watt’s first straight-line linkage mechanism [15], (d)

Robert’s linkage, 1841 (e) Chebyshev’s linkage, 1867 (f) Peaucellier’s linkage, 1873, (g)

Silverster-Kempe’s linkage, 1877, (h) Chebyshev’s combination, 1867 (i) Chebyshev-Evans

combination, 1907. From [8].

yet I am more proud of the parallel motion than of any other mechanical invention I
have ever made” [15].

Since the initial inception of the straight-line mechanism, many inventors engaged

in improving and creating alternative designs. Figures 6d-i show a number of addi-

tional practical designs. The obsession with the straight-line mechanism continued

well beyond what its practical usefulness merited, to become a mathematical puzzle

in its own right. The challenge continued even after the invention of the perfect

mechanism by Peaucellier in 1873 – a century after Watt’s initial invention. Numer-

ous straight-line mechanisms were proposed, as evident from the 39 different

straight-line mechanisms shown in the Voigt catalog [19] of educational models (Fig-

LipsonGECCO Humies

Lipson, H. 2004.Lipson, H. 2004.Lipson, H. 2004.

Lohn, Hornby and LindenSpector

Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (* X Y)
! (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
! (+ 4 (- Z 23)))

Mutating Lisp

Parent 1:!(+ (* X Y)
 (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! ! (* (- (* 2 Z) 1)
! ! (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! ! (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! ! (* (* X Y)
! ! (+ 14 (/ Y X))))

Recombining Lisp

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression

Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters

y = x3-0.2Evolving

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Target

(- (% (* 0.1
 (* X X))
 (- (% 0.1 0.1)
 (* X X)))
 0.1)

Best Program, Gen 0

-0.25

0

0.25

0.5

0.75

1

0

0.
25 0.
5

0.
75 1

Generation 0

Target

(- (* (* (% X 0.1)
 (* 0.1 X))
 (- X
 (% 0.1 X)))
 0.1)

Best Program, Gen 5

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 5

Target

(+ (- (- 0.1
 (- 0.1
 (- (* X X)
 (+ 0.1
 (- 0.1
 (* 0.1
 0.1))))))
 (* X
 (* (% 0.1
 (% (* (* (- 0.1 0.1)
 (+ X
 (- 0.1 0.1)))
 X)
 (+ X (+ (- X 0.1)
 (* X X)))))
 (+ 0.1 (+ 0.1 X)))))
 (* X X))

Best Program, Gen 12

-0.25

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75 1

Generation 12

Target

(- (- (* X (* X X))
 0.1)
 0.1)

Best Program, Gen 22

-0.25

0

0.25

0.5

0.75

0

0.
25 0.

5

0.
75 1

Generation 22

Target

Genetic Programming for Finite Algebras

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

David M. Clark
Mathematics

SUNY New Paltz
New Paltz, NY 12561

clarkd@newpaltz.edu

Ian Lindsay
Hampshire College
Amherst, MA 01002

iml04@hampshire.edu

Bradford Barr
Hampshire College
Amherst, MA 01002

bradford.barr@gmail.com

Jon Klein
Hampshire College
Amherst, MA 01002
jk@artificial.com

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Humies 2008
GOLD MEDAL

Goal

• Find finite algebra terms that have certain special
properties

• For decades there was no way to produce these
terms in general, short of exhaustive search

• Current best methods produce enormous terms

Significance, Time

Significance, Time

Significance, Size

(for A1)

Significance, Size

(for A1)

Human Competitive?
• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on
significant problems, providing benefits of several
orders of magnitude with respect to search speed
and result size

• Because there were no prior methods for
generating practical terms in practical amounts of
time, GP has provided the first solution to a
previously open problem in the field

Humies 2004
GOLD MEDAL

Evolution, the Designer

“Darwinian evolution is itself a designer
worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29, 2005

Dirt-Sensing, Obstacle-
Avoiding Robot Problem

>

DSOAR Instructions

DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

1x108

2x108

3x108

4x108

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec

DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

2x106

4x106

6x106

8x106

1x107

1.2x107

1.4x107

1.6x107

C
om

pu
ta

tio
na

l E
ffo

rt

Tag
Exec

Evolved DSOAR
Architecture (in one environment)

Module0

Module1

3 Module2

1

Module4
1

Module3
2 5

Module7

2 2 3

1

Module8

3

2 4

3 8

Module5

3 9

Module6

1 5

Evolved DSOAR
Architecture (in another environment)

Module0

Module2

1

Module9

1

Module10

1

Module11

1

Module12
1

Module3
2 8

Module13

1 8

Module14

2 6

Module4

2 7

2 6

Module5

3 8

1 1

1 2

Autoconstructive Evolution

• Individual programs make their own children

• Hence they control their genetic representations,
mutation rates, sexuality, reproductive timing, etc.

• The machinery of reproduction and diversification
(i.e., the machinery of evolution) evolves

• Selection may favor reactive and developmental
stability

SwarmEvolve 2

Conclusions

• Genetic programming is a powerful problem-
solving technique based loosely on biological
evolution

• In genetic programming the genome is a
reactive system with many features of
biological genetic systems that are only now
becoming well appreciated, including self
regulation and complex interactions between
the environment and elements of the genome

