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Evolutionary Computation
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Traditional Genetic 
Algorithms

• Interesting dynamics

• Rarely solve interesting hard problems



Genetic Programming

• Evolutionary computing to produce 
executable computer programs.

• Programs are tested by executing them.
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Fig. 6. Some key straight-line mechanisms: (a) Watt’s original rack and sector solution, 

1782 [], (b) Watt improvement, 1784, (c) Watt’s first straight-line linkage mechanism [15], (d) 

Robert’s linkage, 1841 (e) Chebyshev’s linkage, 1867 (f) Peaucellier’s linkage, 1873, (g) 

Silverster-Kempe’s linkage, 1877, (h) Chebyshev’s combination, 1867 (i) Chebyshev-Evans 

combination, 1907. From [8]. 

yet I am more proud of the parallel motion than of any other mechanical invention I 
have ever made” [15]. 

Since the initial inception of the straight-line mechanism, many inventors engaged 

in improving and creating alternative designs. Figures 6d-i show a number of addi-

tional practical designs. The obsession with the straight-line mechanism continued 

well beyond what its practical usefulness merited, to become a mathematical puzzle 

in its own right. The challenge continued even after the invention of the perfect 

mechanism by Peaucellier in 1873 – a century after Watt’s initial invention. Numer-

ous straight-line mechanisms were proposed, as evident from the 39 different 

straight-line mechanisms shown in the Voigt catalog [19] of educational models (Fig-
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Evolution, the Designer

“Darwinian evolution is itself a designer 
worthy of significant respect, if not religious 
devotion.” Boston Globe OpEd, Aug 29, 2005



Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).



! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (* X Y)
!    (+ 4 (- Z 23)))

! (+ (- (+ 2 2) Z)
!    (+ 4 (- Z 23)))

Mutating Lisp



Parent 1:!(+ (* X Y)
          (+ 4 (- Z 23)))
Parent 2:!(- (* 17 (+ 2 X))
! !       (* (- (* 2 Z) 1)
! !          (+ 14 (/ Y X))))

Child 1:! (+ (- (* 2 Z) 1)
! !       (+ 4 (- Z 23)))
Child 2:! (- (* 17 (+ 2 X))
! !       (* (* X Y)
! !          (+ 14 (/ Y X))))

Recombining Lisp



Given a set of data points, evolve a program 
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)

Symbolic Regression



Maximum number of Generations: 51
Size of Population: 1000
Maximum depth of new individuals: 6
Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: 17
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3
Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method:  RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

GP Parameters



y = x3-0.2Evolving
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ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term
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or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient
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Primal: every possible operation can be expressed by a 
term using only (and not even) ∧, ∨, and ¬.
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the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [16], we
are not aware of significant prior results. We document here
the discovery of particular algebraic terms that have both
theoretical significance and quantifiable di⇤culty, and we ar-
gue that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to pro-
duce our results, which are themselves presented in Section
4. In Section 5 we discuss the significance of these results, in-
cluding our claims of human-competitive performance, and
in Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [29], [9], [2]), important sub-
disciplines such as group theory [18], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient
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the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [16], we
are not aware of significant prior results. We document here
the discovery of particular algebraic terms that have both
theoretical significance and quantifiable di⇤culty, and we ar-
gue that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to pro-
duce our results, which are themselves presented in Section
4. In Section 5 we discuss the significance of these results, in-
cluding our claims of human-competitive performance, and
in Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [29], [9], [2]), important sub-
disciplines such as group theory [18], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

Everybody’s Favorite 
Finite Algebra



Bigger Finite Algebras

• Have applications in many areas of science, 
engineering, mathematics

• Can be much harder to analyze/understand

• Number of terms grows astronomically with 
size of underlying set



Goal
• Find terms that have certain special properties

• Discriminator terms, determine primality

• Mal’cev, majority, and Pixley terms

• For decades there was no way to produce these 
terms in general, short of exhaustive search

• Current best methods produce enormous terms

for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 ⇥ {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ⇧ ¬y ⇧ z) ⌃ (x ⇧ ¬y ⇧ z) ⌃ (x ⇧ y ⇧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) � m(y, x, x) � y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a ↵majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) � j(y, x, x) � j(x, y, x) � x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) � p(y, x, x) � y and p(x, y, x) � x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x ⇤= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time e⇤cient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 � 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 � 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 � 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 � 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 � 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 � 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES
In the following subsections we describe the specific GP

techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational e�ort.
In any event our claims here are not for the peculiar e⇤cacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ
Most of the results presented in this paper were produced

using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/



Algebras Explored
for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 ⇥ {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ⇧ ¬y ⇧ z) ⌃ (x ⇧ ¬y ⇧ z) ⌃ (x ⇧ y ⇧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) � m(y, x, x) � y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a ↵majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) � j(y, x, x) � j(x, y, x) � x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) � p(y, x, x) � y and p(x, y, x) � x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x ⇤= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time e⇤cient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 � 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 � 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 � 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 � 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 � 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 � 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES
In the following subsections we describe the specific GP

techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational e�ort.
In any event our claims here are not for the peculiar e⇤cacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ
Most of the results presented in this paper were produced

using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/



Results

• Discriminators for A1, A2, A3, A4, A5

• Mal’cev and majority terms for B1

• Example Mal’cev term for B1:

((((((((x*(y*x))*x)*z)*(z*x))*((x*(z*(x*(z*y))))*z))*z)
*z)*(z*((((x*(((z*z)*x)*(z*x)))*x)*y)*(((y*(z*(z*y)))*
(((y*y)*x)*z))*(x*(((z*z)*x)*(z*(x*(z*y)))))))))



Significance, Time



Significance, Time



Significance, Size

(for A1)



Significance, Size

(for A1)



Human Competitive?
• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on 
significant problems, providing benefits of several 
orders of magnitude with respect to search speed 
and result size

• Because there were no prior methods for 
generating practical terms in practical amounts of 
time, GP has provided the first solution to a 
previously open problem in the field
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Expressive Languages

• Strongly typed genetic programming

• Automatically defined functions

• Automatically defined macros

• Architecture-altering operations

• Developmental genetic programming

• Push provides all of the above and more, all 
without any mechanisms beyond the stack-
based execution architecture



Expressive Languages

• Strongly typed genetic programming

• Automatically defined functions

• Automatically defined macros

• Architecture-altering operations

• Developmental genetic programming

• Push provides all of the above and more, all 
without any mechanisms beyond the stack-
based execution architecture



Why Push?

• Multiple data types

• User-defined procedures & functions

• User-defined macros & control structures

• User-defined representations

• Dynamic definition & redefinition

• All of the above provided without any 
mechanisms beyond the stack-based 
execution architecture



And I won’t even mention

• Automatic simplification

• Autoconstructive evolution

• Iterators and combinators

• Code self reference

• Ontogenetic programming

• etc. See http://hampshire.edu/lspector/push.html

http://hampshire.edu/lspector/push.html
http://hampshire.edu/lspector/push.html


Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code, 
exec, vector, matrix, quantum gate, [add more as 
needed]

• Missing argument? NOOP

• Trivial syntax:
program → instruction | literal | ( program* )



Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

( 5 CODE.QUOTE ( INTEGER.+ ) CODE.DO*COUNT )
( 5 EXEC.DO*COUNT ( INTEGER.+ ) )

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
( TIMES2 CODE.QUOTE ( 2 INTEGER.* ) CODE.SET )

Push3:
( TIMES2 EXEC.DEFINE ( 2 INTEGER.* ) )

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:



( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )

( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )

exec code bool int float

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ 
TRUE FALSE BOOLEAN.OR )



2

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )

exec code bool int float



3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
2

exec code bool int float



INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE 3

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
2

exec code bool int float



4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6

exec code bool int float



5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6 4.1

exec code bool int float



FLOAT.+

TRUE

FALSE 5.2

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6 4.1

exec code bool int float



TRUE

FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
6 9.3

exec code bool int float



FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
TRUE 6 9.3

exec code bool int float



FALSE

BOOLEAN.OR 
( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
TRUE 6 9.3

exec code bool int float



( 2 3 INTEGER.* 4.1 5.2 
FLOAT.+ TRUE FALSE 

BOOLEAN.OR )
TRUE 6 9.3

exec code bool int float



Same Results

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+ 
TRUE FALSE BOOLEAN.OR )

( 2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+ )



( 3.14 CODE.REVERSE 
CODE.CDR IN IN

5.0 FLOAT.> 
(CODE.QUOTE FLOAT.*) 

CODE.IF )

( 3.14 CODE.REVERSE 
CODE.CDR IN IN

5.0 FLOAT.> 
(CODE.QUOTE FLOAT.*) 

CODE.IF )

exec code bool int float

( 3.14 CODE.REVERSE CODE.CDR IN IN 5.0 
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF )

IN=4.0



3.14

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
( 3.14 CODE.REVERSE 

CODE.CDR IN IN
5.0 FLOAT.> 

(CODE.QUOTE FLOAT.*) 
CODE.IF )

exec code bool int float



CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
( 3.14 CODE.REVERSE 

CODE.CDR IN IN
5.0 FLOAT.> 

(CODE.QUOTE FLOAT.*) 
CODE.IF )

3.14

exec code bool int float



CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(CODE.IF (CODE.QUOTE 
FLOAT.*) FLOAT.> 5.0 IN 

IN CODE.CDR 
CODE.REVERSE 3.14)

3.14

exec code bool int float



IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float



IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float



5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float



5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

3.14

exec code bool int float



(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float



CODE.QUOTE

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float



FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*) 

FLOAT.> 5.0 IN IN 
CODE.CDR 

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float



4.0

FLOAT.* 3.14

exec code bool int float



12.56

exec code bool int float



(IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./)

(IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.*)
10.0 FLOAT./)

IN=4.0



IN

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./)

exec code bool int float



EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float



(3.13 FLOAT.*)

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float



3.13

FLOAT.*

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float



FLOAT.*

(3.13 FLOAT.*)

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float



(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float



3.13

FLOAT.*

10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float



FLOAT.*

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float



10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float



10.0

FLOAT./ (IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float



(IN EXEC.DUP (3.13 
FLOAT.*) 10.0 FLOAT./) 3.91876

exec code bool int float



Modularity is Everywhere



Modules in GP
• Automatically-defined functions (Koza), 

macros (Spector)

• Architecture-altering operations (Koza)

• Module acquisition/encapsulation systems 
(Kinnear, Roberts, many others)

• Modules in GE (Swafford et al., others)

• In Push: code-manipulation instructions that 
build/execute modules as programs run

We will return to this later!



ADFs
• All programs in the population have the 

same, pre-specified architecture

• Genetic operators respect that architecture

• (progn (defn adf0 (arg0 arg1) ...)
       (defn adf1 (arg0 arg1 arg2) ...)
   (.... (adf1 ...) (adf0 ...) ...))

•Complicated, brittle, limited... 

•Architecture-altering operations: more so



Modules in Push

• Transform/execute code as data: Works, emerges, 
but stack-based module reference won’t scale well

• Execution stack manipulation:
(3 exec.dup (1 integer.+))

More parsimonious, but same scaling issue

• Named modules:
(plus1 exec.define (1 integer.+)) ... plus1

Coordinating definitions/references is tricky and 
this never arises in evolution!



Modularity
Ackley and Van Belle



Code-as-data 
Modularity in Push



Tags
• Roots in John Holland’s work on principles 

of complex adaptive systems

• Applied in models of the evolution of 
altruism, with agents having tags and tag-
difference thresholds for donation

• A tag is an initially meaningless identifier that 
can come to have meaning through the 
matches in which it participates

• Matches may be inexact



Tag-based Modules in GP

• Add mechanisms for tagging code

• Add mechanisms for retrieving/branching to 
code with closest matching tag

• As long as any code has been tagged, all 
branches go somewhere

• Number of tagged modules can grow 
incrementally over evolutionary time



Tags in Push
• Tags are integers embedded in instruction names

• Instructions like tag.exec.123 tag values

• Instructions like tagged.456 recall values by 
closest matching tag

• If a single value has been tagged then all tag 
references will recall (and execute) values

• The number of tagged values can grow 
incrementally over evolutionary time



Lawnmower Problem

• Used by Koza to demonstrate utility of ADFs 
for scaling GP up to larger problems

>



Lawnmower Instructions



Lawnmower Effort*
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Lawnmower Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

100000

200000

300000

400000

500000

600000

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec



                          problem size
            8x4       8x6       8x8       8x10       8x12 
instr set
basic     10000     30000    114000     320000     630000    
tag        7000      2000     29000      <1000       5000     
exec      12000      5000     28000       5000      17000  

Lawnmower Effort



Dirt-Sensing, Obstacle-
Avoiding Robot Problem

Like the lawnmower problem but harder and 
less uniform

>



DSOAR Instructions
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DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

1x108

2x108

3x108

4x108

C
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DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

2x106

4x106

6x106

8x106

1x107

1.2x107

1.4x107

1.6x107

C
om

pu
ta

tio
na

l E
ffo

rt

Tag
Exec



                          problem size
            8x4       8x6       8x8       8x10       8x12 
instr set
basic   1584000 430083000       inf        inf        inf     
tag      216000    864000   3420000    2599000    3051000 
exec     450000   2125000   4332000   16644000    7524000     

DSOAR Effort



More data, source code, 
etc, at:

http://hampshire.edu/lspector/tags-gecco-2011

http://hampshire.edu/lspector/tags-gecco-2011
http://hampshire.edu/lspector/tags-gecco-2011


Evolved DSOAR 
Architecture (in one environment)

Module0

Module1

3 Module2

1

Module4
1

Module3
2 5

Module7

2 2 3

1

Module8

3

2 4

3 8

Module5

3 9

Module6

1 5



Evolved DSOAR 
Architecture (in another environment)

Module0

Module2

1

Module9

1

Module10

1

Module11

1

Module12
1

Module3
2 8

Module13

1 8

Module14

2 6

Module4

2 7

2 6

Module5

3 8

1 1

1 2



Tags in S-Expressions

• A simple form:
(progn (tag-123 (+ a b)) tagged-034)

• Must do something about endless recursion

• Must do something about return values

• Must do something fancy to support 
modules with arguments, particularly 
arguments of multiple types.



Future Work

• Tags in s-expression-based GP 

• Tag usage over evolutionary time

• No-pop tagging in PushGP

• Tags in autoconstructive evolution

• Applications, application, applications



Conclusions

• Execution stack manipulation supports the 
evolution of modular programs in many 
situations

• Tag-based modules are more effective in 
complex, non-uniform problem 
environments

• Tag-based modules may help to evolve 
complex software and solutions to unsolved 
problems in the future


