
Ontogenetic
Programming

Lee Spector*†
Kilian Stoffel †

*School of Cognitive Science and Cultural Studies, Hampshire College, Amherst, MA 01002
†Department of Computer Science, University of Maryland, College Park, MD 20742

This talk also includes results reported in Spector, L., and K. Stoffel. 1996. Automatic Generation of Adaptive
Programs. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson (editors), From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: The

MIT Press.

Overview

• Phylogeny and Ontogeny

• Ontogenetic HiGP

• Examples:

• Binary Sequence Prediction

• Wumpus World

• Conclusions

Phylogeny and Ontogeny
• Phylogeny = the developmental progression of a

population through evolutionary time.

• Ontogeny = the developmental progression of
an individual throughout its lifespan.

• GP uses biologically inspired phylogenetic
mechanisms.

• Through the addition of ontogenetic
mechanisms, GP can produce adaptive
programs that solve more difficult problems.

Ontogeny and Morphology

• Morphology = the developmental progression of
an individual from genotype to phenotype.
(“growth phase”)

• Morphological components in GP include
Gruau’s encoding → network transforms,
Zomorodian’s tree → PDA transforms, and
Spector’s ADM expansions. See [Angeline
1995] for formal definitions and a survey.

Ontogeny and Morphology

• Ontogeny = the developmental progression
of an individual throughout its lifespan. Note
that this development may be guided by the
runtime environment.

• Morphology ⊂ Ontogeny.

Ontogenetic Mechanisms

• Runtime memory mechanisms:

• Indexed memory [Teller 1994]

• Memory terminals [Iba et al. 1995]

• Runtime “morphology” implemented via
program self-modification operators. We
call this strategy ontogenetic programming.

HiGP
[Stoffel and Spector 1996]

• A high-performance GP system .

• Manipulates linear (rpn) programs that are
executed on a stack-based virtual machine.

• Fast, flexible, and portable.

• Parallel HiGP scales nearly linearly with the
number of available processors.

• Program self-modification mechanisms can
be particularly simple for linear programs.

HiGP
Virtual Stack Machine Example

push-x noop push-y * push-x push-z
noop - + noop noop

The noops in this program have no effect and the
remainder is equivalent to the Lisp expression:

(+ (* x y) (- x z))

and to the C expression:

(x * y) + (x - z)

Ontogenetic HiGP
• segment-copy copies a part of the linear program

over another part of the program. The function takes 3
arguments from the stack: the start position of the
segment to copy, the length of the segment, and the
position to which it should be copied.

• shift-left rotates the program to the left. The call
takes one argument from the stack: the distance by which
the program is to be rotated.

• shift-right rotates the program to the right. The
call takes one argument from the stack: the distance by
which the program is to be rotated.

Binary Sequence Prediction

• As in symbolic regression, attempt to
evolve a function of x that produces the
corresponding y.

• Run programs on a sequence of x values
(0–17 here), always in the same order, for
each fitness test “lifetime.”

1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

Binary Sequence Prediction

• Function set: +, -, *, ÷, push-x, [ontogenetic
operators], [memory operators]

• Positive output ⇒ 1, 0 or negative ⇒ 0

• Population size=100, Program size=30, 90%
Crossover, 10% Reproduction, 20
Generations

Results
• In 100 runs without ontogenetic operators, no successful

programs were evolved.

• In 100 runs with ontogenetic operators 12 successful
programs were evolved. Of these 10 appeared to be
general; although fitness was assessed only over the
range [0–17], these programs produced correct results
over the range [0–39].

• In 100 runs with indexed memory (and without
ontogenetic operators) no successful programs were
evolved.

Snapshots Over a Lifetime
+ push-x - noop - shift-left shift-right push-x
segment-copy shift-left shift-right * + segment-copy +
% * * noop noop shift-right + % shift-left shift-right
noop noop - noop *

After the completion of 9 full executions:

- shift-left + % * * noop noop shift-right % shift-left
noop noop - noop * + push-x - noop - shift-left + % * *
noop noop shift-right %

At the end of 18 executions it appears more similar to, but still different from, its
initial state:

+ push-x - noop - shift-left shift-right segment-copy
shift-left * + segment-copy + % * * noop noop shift-
right % shift-left noop noop - noop * + push-x - noop

Wumpus World

Wumpus World

• Goal: to guide an agent through a complex and
dangerous virtual world (Russell and Norvig,
1995).

• Function set: and, or, not, sequence,
if-zero, if-less-or-equal, +, -,
*, sensors, constants, [read, write]

• Population size=200, Program size=100, 89.5%
crossover, 10% reproduction, 0.5% mutation, 20
generations per run

Results

• In 200 runs without ontogenetic operators,
no successful programs were evolved.

• In 200 runs with ontogenetic operators 10
successful programs were evolved.

Evolved Program
noop and 3 write - - not + and + 3
2 noop 6 * write 5 4 1 ifz 1 + + 6
read 1 and + + 2 shift-right 1
stench breeze + or * 0 breeze + or
1 2 4 shift-left 3 bump not 1 ifz 0
1 6 read glitter 5 segment-copy not
3 shift-left shift-right write
write * stench - 6 bump sound - 6
noop bump glitter 0 3 - bump 0 0
sound bump stench 4 * or 1 ifz and
5 2 bump 5 * 5 write 6 and 1 -

Ontogenetic Programming
with S-Expressions

• subtree-copy (from-index, to-index)

• between rather than during executions

• global indices not meaningful after crossover

• explosive ontogenetic growth

• structured-subtree copy (from-index, to-index, rpb)

• dynamic ADFs and ADMs

• versions of defun, funcall etc. in function set

• store functions/macros in indexed memory

• runtime self-modification via module redefinition

Future Work

• Real-world problems

• What self-modification strategies are
actually used by successful individuals?

• Vary set of ontogenetic operators

Conclusions
• GP can be used to produce programs that

themselves develop in significant, structural
ways over the course of a run.

• “Ontogenetic programming” is the
technique of including program self-
modification operators in the function set.

• Ontogenetic programming can allow for
the evolution of solutions in cases for
which ordinary GP fails.

