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Phylogeny and Ontogeny
• Phylogeny = the developmental progression of a 

population through evolutionary time.

• Ontogeny = the developmental progression of 
an individual throughout its lifespan.

• GP uses biologically inspired phylogenetic 
mechanisms.

• Through the addition of ontogenetic 
mechanisms, GP can produce adaptive 
programs that solve more difficult problems.



Ontogeny and Morphology

• Morphology = the developmental progression of 
an individual from genotype to phenotype. 
(“growth phase”)

• Morphological components in GP include 
Gruau’s encoding → network transforms, 
Zomorodian’s tree → PDA transforms, and 
Spector’s ADM expansions. See [Angeline 
1995] for formal definitions and a survey.



Ontogeny and Morphology

• Ontogeny = the developmental progression 
of an individual throughout its lifespan. Note 
that this development may be guided by the 
runtime environment.

• Morphology ⊂ Ontogeny.



Ontogenetic Mechanisms

• Runtime memory mechanisms:

• Indexed memory [Teller 1994]

• Memory terminals [Iba et al. 1995]

• Runtime “morphology” implemented via 
program self-modification operators. We 
call this strategy ontogenetic programming.



HiGP
[Stoffel and Spector 1996]

• A high-performance GP system .

• Manipulates linear (rpn) programs that are 
executed on a stack-based virtual machine.

• Fast, flexible, and portable.

• Parallel HiGP scales nearly linearly with the 
number of available processors.

• Program self-modification mechanisms can 
be particularly simple for linear programs.



HiGP 
Virtual Stack Machine Example

push-x noop push-y * push-x push-z 
noop - + noop noop

The noops in this program have no effect and the 
remainder is equivalent to the Lisp expression:

(+ (* x y) (- x z))

and to the C expression:

(x * y) + (x - z)



Ontogenetic HiGP
• segment-copy copies a part of the linear program 

over another part of the program. The function takes 3 
arguments from the stack: the start position of the 
segment to copy, the length of the segment, and the 
position to which it should be copied.

• shift-left rotates the program to the left. The call 
takes one argument from the stack: the distance by which 
the program is to be rotated.

• shift-right rotates the program to the right. The 
call takes one argument from the stack: the distance by 
which the program is to be rotated.



Binary Sequence Prediction

• As in symbolic regression, attempt to 
evolve a function of x that produces the 
corresponding y.

• Run programs on a sequence of x values 
(0–17 here), always in the same order, for 
each fitness test “lifetime.”
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Binary Sequence Prediction

• Function set: +, -, *, ÷, push-x, [ontogenetic 
operators], [memory operators]

• Positive output ⇒ 1, 0 or negative ⇒ 0

• Population size=100, Program size=30, 90% 
Crossover, 10% Reproduction, 20 
Generations





Results
• In 100 runs without ontogenetic operators, no successful 

programs were evolved.

• In 100 runs with ontogenetic operators 12 successful 
programs were evolved. Of these 10 appeared to be 
general; although fitness was assessed only over the 
range [0–17], these programs produced correct results 
over the range [0–39].

• In 100 runs with indexed memory (and without 
ontogenetic operators) no successful programs were 
evolved.



Snapshots Over a Lifetime
+ push-x - noop - shift-left shift-right push-x 
segment-copy shift-left shift-right * + segment-copy + 
% * * noop noop shift-right + % shift-left shift-right 
noop noop - noop *

After the completion of 9 full executions:

- shift-left + % * * noop noop shift-right % shift-left 
noop noop - noop * + push-x - noop - shift-left + % * * 
noop noop shift-right % 

At the end of 18 executions it appears more similar to, but still different from, its 
initial state:

+ push-x - noop - shift-left shift-right segment-copy 
shift-left * + segment-copy + % * * noop noop shift-
right % shift-left noop noop - noop * + push-x - noop 



Wumpus World



Wumpus World

• Goal: to guide an agent through a complex and 
dangerous virtual world (Russell and Norvig, 
1995).

• Function set: and, or, not, sequence, 
if-zero, if-less-or-equal, +, -, 
*, sensors, constants, [read, write]

• Population size=200, Program size=100, 89.5% 
crossover, 10% reproduction, 0.5% mutation, 20 
generations per run





Results

• In 200 runs without ontogenetic operators, 
no successful programs were evolved.

• In 200 runs with ontogenetic operators 10 
successful programs were evolved.



Evolved Program
noop and 3 write - - not + and + 3 
2 noop 6 * write 5 4 1 ifz 1 + + 6 
read 1 and + + 2 shift-right 1 
stench breeze + or * 0 breeze + or 
1 2 4 shift-left 3 bump not 1 ifz 0 
1 6 read glitter 5 segment-copy not 
3 shift-left shift-right write 
write * stench - 6 bump sound - 6 
noop  bump glitter 0 3 - bump 0 0 
sound bump stench 4 * or 1 ifz and 
5 2 bump 5 * 5 write 6 and 1 - 



Ontogenetic Programming
with S-Expressions

• subtree-copy (from-index, to-index)

• between rather than during executions

• global indices not meaningful after crossover

• explosive ontogenetic growth

• structured-subtree copy (from-index, to-index, rpb)

• dynamic ADFs and ADMs

• versions of defun, funcall etc. in function set

• store functions/macros in indexed memory

• runtime self-modification via module redefinition



Future Work

• Real-world problems

• What self-modification strategies are 
actually used by successful individuals?

• Vary set of ontogenetic operators



Conclusions
• GP can be used to produce programs that 

themselves develop in significant, structural 
ways over the course of a run.

• “Ontogenetic programming” is the 
technique of including program self-
modification operators in the function set.

• Ontogenetic programming can allow for 
the evolution of solutions in cases for 
which ordinary GP fails.


