
Evolving Code
Lee Spector
Hampshire College & UMass Amherst

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Evolving LEGO bridges

Evolving Code

• LEGO -> Code

• Bridge -> • Meets specification
• Solves problem
• Provides insight

Evolutionary Computing

Random Assessment

Selection

Variation

Solution

Genetic Programming

Random
Programs

Assessment

Selection

Variation

Software

The result was patented as an invention in the past is an improvement over a patented invention or would qualify today as a patentable new
invention.

The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed scientific
journal.

The result is equal to or better than a result that was placed into a database or archive of results maintained by an internationally recognized
panel of scientific experts.

The result is publishable in its own right as a new scientific result independent of the fact that the result was mechanically created.

The result is equal to or better than the most recent human-created solution to a long-
standing problem for which there has been a succession of increasingly better human-created solutions.

The result is equal to or better than a result that was considered an achievement in its field at the time it was first discovered.

The result solves a problem of indisputable difficulty in its field.

The result holds its own or wins a regulated competition involving human contestants (in the
form of either live human players or human-written computer programs).

Humies Gold Medal, 2004

An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission

Jason D. Lohn, Gregory S. Hornby, Derek S. Linden
NASA Ames Research Center

Humies Gold Medal, 2004

Lee Spector
Hampshire College

Genetic Programming for Finite Algebras

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

David M. Clark
Mathematics

SUNY New Paltz
New Paltz, NY 12561

clarkd@newpaltz.edu

Ian Lindsay
Hampshire College
Amherst, MA 01002

iml04@hampshire.edu

Bradford Barr
Hampshire College
Amherst, MA 01002

bradford.barr@gmail.com

Jon Klein
Hampshire College
Amherst, MA 01002
jk@artificial.com

ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
the very existence of a constraint-satisfying equation, term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2008 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [?], we are
not aware of significant prior results. We document here the
discovery of particular algebraic terms that have both theo-
retical significance and quantifiable di⇤culty, and we argue
that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section ?? we describe the GP techniques that we used to
produce our results, which are themselves presented in Sec-
tion ??. In Section ?? we discuss the significance of these
results, including our claims of human-competitive perfor-
mance, and in Section ?? we summarize our findings and
discuss prospects for further applications of the presented
methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := ⌥A, F � consists of an underlying set A and an asso-
ciated collection F of operations f : Ar � A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [?], [?], [?]), important sub-
disciplines such as group theory [?], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := ⌥{0, 1},⇤,⌅,¬�, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (⇤), OR (⌅) and NOT (¬).
These operations can be defined by tables:

⇥ 0 1
0 0 0
1 0 1

⇤ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is su⇤cient

((((((((x∗(y∗x))∗x)∗z)∗(z∗x))∗((x∗(z∗(x∗(z∗y))))∗z))∗
z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗
y)))∗(((y∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

Humies Gold Medal, 2008

Humies Gold Medal, 2012

Cameron Browne
Imperial College London

Humies Gold Medal, 2009

Humies Gold Medal, 2016

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, Justyna Petke
University College London

Automated Software Transplantation

Kannappan, K., L. Spector, M. Sipper, T. Helmuth, W. La Cava, J. Wisdom, and O. Bernstein. 2015. Analyzing
a decade of Human-competitive ("HUMIE") winners -- what can we learn? In Genetic Programming Theory
and Practice XII. New York: Springer.

Evolution, the Designer

“Darwinian evolution is itself a designer worthy of
significant respect, if not religious devotion.”

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Koza, 1992

Languages

• Lisp-style symbolic expressions (Koza, ...)
• Purely functional/lambda expressions (Walsh, Yu, ...)
• Linear sequences of machine/byte code (Nordin et al., ...)
• Artificial assembly-like languages (Ray, Adami, ...)
• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...)
• Graph-structured programs (Teller, Globus, ...)
• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)
• Fuzzy rule systems (Tunstel, Jamshidi, ...)
• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...)
• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...)

Push

• Programming language for programs that evolve

• Simple syntax, but rich data and control structures:
program → instruction | literal | (program*)

• Data flows via typed stacks, not syntax

• C++, Clojure, Common Lisp, Elixir, Java, Javascript,
Python, Racket, Ruby, Scala, Scheme, Swift, ...

• http://pushlanguage.org

http://pushlanguage.org

Push Execution

• Push the program onto the exec stack.

• While exec isn't empty and and we haven't hit the
step limit, pop and do the top:

• If it's an instruction, execute it.

• If it's a literal, push it onto the appropriate stack.

• If it's a block of code, push its elements back onto
the exec stack one at a time.

Integer Boolean StringExec ...

(1 2 integer_add)

Integer Boolean StringExec ...

(1 2 integer_add)

Integer Boolean StringExec ...

integer_add

2

1

Integer Boolean StringExec ...

integer_add

2

1

Integer Boolean StringExec ...

integer_add 1

2

Integer Boolean StringExec ...

integer_add 1

2

Integer Boolean StringExec ...

integer_add 1

2

Integer Boolean StringExec ...

integer_add 1

2

Integer Boolean StringExec ...

1

2

Integer Boolean StringExec ...

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -20 true "Push"

boolean_and 7 true "Hello"

integer_mult false

true

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -20 true "Push"

boolean_and 7 true "Hello"

false

true

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -140 true "Push"

boolean_and true "Hello"

false

true

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -140 true "Push"

boolean_and true "Hello"

false

true

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -140 true "Push"

true "Hello"

false

true

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -140 true "Push"

true "Hello"

false

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -140 true "Push"

true "Hello"

false

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

(3 string_dup) -140 true "Push"

true "Hello"

false

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

string_dup -140 true "Push"

true "Hello"

false

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

string_dup -140 true "Push"

true "Hello"

false

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

string_dup -140 true "Push"

true "Hello"

false

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

string_dup -140 true "Push"

true "Hello"

false

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

string_dup -140 true "Push"

true "Hello"

false

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

-140 true "Push"

true "Hello"

false

3

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

-140 true "Push"

true "Hello"

false

3

"Hello"

Integer Boolean StringExec ...

integer_add 100 false "Evolution!"

-140 true "Push"

true "Hello"

false

3

"Hello"

Integer Boolean StringExec ...

100 false "Evolution!"

-140 true "Push"

true "Hello"

false

3

"Hello"

Integer Boolean StringExec ...

100 false "Evolution!"

-137 true "Push"

true "Hello"

false "Hello"

Example exec Instructions
Conditionals:

exec_if exec_when

General loops:
exec_do*while

“For” loops:
exec_do*range exec_do*times

Looping over structures:
exec_do*vector_integer exec_string_iterate

Combinators:
exec_k exec_y exec_s

Auto-Simplification

• Loop:
• Make it randomly simpler
• Keep simpler if as good or better; otherwise revert

• Efficiently and reliably reduces the size of evolved
programs

• Often improves generalization

SUCCESS at generation 20
Successful program: (boolean_and boolean_shove exec_do*count (exec_swap (integer_empty char_yank boolean_or

integer_fromboolean \space \newline) (exec_dup (char_yank char_iswhitespace string_butlast in1) string_empty boolean_frominteger tagged_275
string_substring) exec_do*times (integer_empty string_dup) string_replacechar print_string string_rot print_char integer_fromboolean
string_length integer_eq string_last boolean_swap integer_yankdup) string_swap string_containschar "Wx{ " exec_stackdepth char_empty
integer_swap integer_rot string_last boolean_swap integer_yankdup string_swap string_containschar "Wx{ " exec_stackdepth char_empty integer_swap
integer_rot integer_fromstring string_pop string_shove char_eq char_empty integer_swap integer_rot integer_fromstring string_pop string_shove
char_rot integer_stackdepth integer_min char_yankdup char_eq char_empty tagged_349 exec_yank string_rot exec_dup (boolean_eq string_removechar
exec_s (exec_dup (boolean_eq exec_rot (exec_s (string_eq string_fromboolean exec_noop char_eq) () (string_butlast) integer_pop) (char_eq
char_empty) (integer_swap integer_rot string_emptystring boolean_stackdepth integer_inc in1 boolean_shove boolean_swap char_isletter integer_gt
integer_yankdup) exec_when (string_emptystring string_nth exec_do*range (\space integer_yankdup string_dup exec_shove (integer_swap
string_removechar exec_yank string_dup exec_empty) char_eq exec_do*times (tagged_349 boolean_pop exec_when (string_removechar integer_mult
integer_inc in1 boolean_shove boolean_swap char_isletter integer_gt string_butlast) integer_mult string_last string_parse_to_chars
boolean_frominteger boolean_yank exec_when (string_nth exec_do*range (\space integer_yankdup string_dup exec_shove (integer_swap
string_removechar exec_yank integer_yank exec_while (boolean_or)) char_isdigit boolean_swap char_isletter) integer_gt integer_yankdup
integer_mult string_last string_parse_to_chars boolean_frominteger char_isletter exec_when (string_nth exec_do*range (\space integer_yankdup
string_dup exec_shove (integer_swap string_removechar exec_yank integer_yank integer_mult integer_inc in1 boolean_shove boolean_swap
char_isletter integer_gt string_butlast) boolean_invert_second_then_and exec_empty string_rot)) boolean_rot char_iswhitespace integer_yank
string_conjchar boolean_dup) integer_add char_dup string_length integer_fromchar string_split char_isdigit boolean_swap boolean_eq char_isdigit
exec_shove (boolean_invert_second_then_and string_empty string_conjchar string_shove) string_fromchar boolean_not string_stackdepth exec_y ()
integer_empty exec_do*range (in1 string_replace)))))) () ()))

Errors: [0

0
0 0]

Total error: 0.0
Size: 231

Auto-simplifying with starting size: 231
...
step: 5000
program: (\space \newline in1 string_replacechar print_string "Wx{ "
string_last in1 string_removechar string_length)
errors: [0

0
0 0]

Total error: 0.0
Size: 11

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Variation

• Replacement mutations

• Crossover / alternation

• UMAD: Uniform Mutation by Addition and Deletion

• 2018 GECCO best paper, GP track

UMAD

• Two passes:
• For each gene, maybe add gene before or after
• Then, for each gene, maybe delete

• Size neutral if d = a/(1+a)

• Capable of replacement, and so much more

Software Synthesis

• 29 benchmark problems taken from intro CS
textbooks

• Require multiple data types and control structures

• Driven by software tests, input/output pairs

• Used for studies of program synthesis, by us and
by others

Paths

• Suppose we have ABC, ADC is a solution, and the
possible genes are just A, B, C, and D

• How many paths are there, of various lengths?
• Count as 1 step:

• Replacement: replace 1 gene
• UMAD: add 1 gene and/or delete 1 gene

• For replacement or UMAD, there is a single 1-step
path, ABC→ADC

2-step paths, replacement

• 2 paths

• If AAC and ACC are unviable, neither path works

2-step paths, UMAD
• 15 paths

ABCDA → ADCDA

Number of Steps Replacement UMAD

1 1 1

2 2 25

3 14 974

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Parent selection

• Traditionally based on overall scores

• Roulette wheels or tournaments

• Unbalanced, qualitatively diverse test sets

Lexicase Selection
• Don't reduce to overall scores

• To select single parent:  
1. Shuffle test cases  
2. First test case – keep best* individuals  
3. Repeat with next test case, etc.  
Until one individual remains

• Selected parent may be specialist, not great on
average, but lead to generalists later

Diversity

GPTP-2015

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Variation

Program

Mutation

Program

Program

Crossover

Program

Program Program

Program

Variation

Program

Mutation

Program

Program

Crossover

Program

Program Program

Program

Written and configured by humans

Autoconstruction

Program

Execute!

Program

Program Program ProgramProgramProgram Program

Autoconstructive Evolution

• Evolve evolution while evolving solutions

• Individuals produce and vary their own children,
with methods that are subject to variation

• May produce EC systems more powerful than
those we can write by hand

Diversification Constraints
Parent

Execute!

Child

Execute!

Child

Parent differs from both children, by different amounts

Synthesis Benchmarks
Number IO, Small or Large, For Loop Index, Compare
String Lengths, Double Letters, Collatz Numbers,
Replace Space with Newline, String Differences,
Even Squares, Wallis Pi, String Lengths Backwards,
Last Index of Zero, Vector Average, Count Odds,
Mirror Image, Super Anagrams, Sum of Squares,
Vectors Summed, X-Word Lines, Pig Latin, Negative
to Zero, Scrabble Score, Word Stats, Checksum,
Digits, Grade, Median, Smallest, Syllables

Solved with PushGP; first with autoconstruction

Future

• Use autoconstruction to solve other previously
unsolved problems

• Study how autoconstruction works, to improve it

• Consider implications for study of evolution of
biological evolution

Outline

• Evolving code

• Language, variation, selection

• Evolving evolution

• Connections

Connections
• Machine learning

• Software engineering

• Programming languages

• Theory

• Evolutionary biology

• Applications

Takeaways

• Evolving code is fun and useful

• Push is a flexible and powerful representation for
programs that evolve

• UMAD maximizes paths for evolution

• Lexicase selection: don't score; randomly sequence

• Evolving evolution is fun; may someday be useful

Thanks

• Nic McPhee, Tom Helmuth, Maggie M. Casale, and Julian Oks

• Members of the Hampshire College Computational Intelligence Lab

• Hampshire College for support for the Hampshire College Institute
for Computational Intelligence

• This material is based upon work supported by the National Science
Foundation under Grants No. 1617087, 1129139 and 1331283. Any
opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

