Evolving Code

Lee Spector
Hampshire College & UMass Amherst

Outline

Evolving code
Language, variation, selection
Evolving evolution

Connections

Outline

Evolving code
Language, variation, selection
Evolving evolution

Connections

Evolving LEGO bridges

Evolving Code

e |EGO -> Code

* Bridge -> ¢ Meets specification
* Solves problem

* Provides insight

Evolutionary Computing

Random =) Assessment =3 Solution

!

Selection

!

Variation

Genetic Programming

Random

—) Assessment =) Software
Programs

!

Selection

!

Variation

Annual "Humies" Awards
For Human-Competitive Results

Produced By Genetic And Evolutionary Computation

The result was in the past is an improvement over a patented invention or would qualify today as a patentable new
atented as an invention

invention.

The result is equal to or better than a result that was accepted as a neW SCIen tlflC reSUItat the time when it was published in a peer-reviewed scientific

journal.

The result is equal to or better than a result that was placed into a database or archive of results maintained by an in ternatiOna”y recognized
panel of scientific experts.

The result is pUbIIShable ln ltS OW" r’ghtas a new scientific result independent of the fact that the result was mechanically created.

meesutis @qUal to or better than the most recent human-created solution .

standing problem for which there has been a succession of increasingly better human-created solutions.

The result is equal to or better than a result that was considered an aChie Vement in itS ﬁEId at the time it was first discovered.
meresut SOIVES @ problem of indisputable difficulty s

The result holds its own or WinS a regUIatEd Competition inVOIVing human ConteStantS (in the

form of either live human players or human-written computer programs).

An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission

Jason D. Lohn, Gregory S. Hornby, Derek S. Linden
NASA Ames Research Center

Humies Gold Medal, 2004

IIIIIIIIIIIIIIII1

M
2 D E

1 {ue ¢ {H] AN Jus.a205 -
o 2 0.17y(0.07291)

IIIIIIIIIIIIIIIIE
TN,

>

° A

Figure 8.11. A gate array diagram for an evolved solution to the AND/OR oracle
problem. The gate marked “f” is the oracle. The sub-diagrams on the right represent
the possible execution paths following the intermediate measurements.

Lee Spector
Hampshire College

Humies Gold Medal, 2004

Genetic Programming for Finite Algebras

Lee Spector David M. Clark lan Lindsay
Cognitive Science Mathematics Hampshire College

Hampshire College SUNY New Paltz ~ Ambherst, MA 01002
Amherst, MA 01002 New Paltz, NY 12561 iml04@hampshire.edu
Ispector@hampshire.edu clarkd@newpaltz.edu

Bradford Barr Jon Klein

Hampshire College Hampshire College
Amherst, MA 01002 Ambherst, MA 01002
bradford.barr@gmail.com jk@artificial.com

((CCCCOC (Y X))+ X) £ 2) (2 X)) (X (2 (X (2 %Y)))) £ 2)) %
2)x2)#(Z#(((X(((Z2) xX) #(2%X))) X) Y) = (((y (2 %(Z
¥))) = (((y*y)X)«2))#(Xx(((Z%2) #X)%(Z(X%(ZxY)))))))))

Humies Gold Medal, 2008

International Journal of Algebra and Computation | Vol. 28, No. 05, pp. 759-790 (2018)

Evolution of algebraic terms 3: Term continuity and beam algorithms

David M. Clark = and Lee Spector

Yavalath is an abstract board game for two or three players, invented by a computer
program called LuDI. It has an easy rule set that any player can pick up immediately,
but which produces surprisingly tricky emergent play.

Yavalath is available from nestorgames, making it the first — and still only —
computer-generated game to be commercially published, together with its sister
game Pentalath.

In October 2011, Yavalath was ranked in the top #100 abstract board games ever
invented on the BoardGameGeek database. This helped it win the GECCO "Humies"
gold medal for human-competitive results in evolutionary computation for 2012.

Here is a Yavalath article in the November 2013 issue of Bitcoin magazine.

Rules

The board starts empty.
Two players take turns adding a piece of their colour to an empty cell.

Win by making a line-of-4 (or more) pieces of your colour.
Lose by making a line-of-3 pieces of your colour beforehand.
Draw if the board otherwise fills up.

No, players are not allowed to pass.

Tactics and Strategy

The key tactical play in Yavalath is the forcing move, as shown below. White move 1 forces Black to lose with the blocking move 2.

Cameron Browne
Imperial College London

Humies Gold Medal, 2012

Fixing software bugs in 10 minutes or less
using evolutionary computation

THE UNIVERSITY of

University of New Mexico Y
<'® NEW MEXICO

Stephanie Forrest
ThanhVu Nguyen
University of Virginia
Claire Le Goues
Westley Weimer

Humies Gold Medal, 2009

Automated Software Transplantation

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, Justyna Petke
University College London

Humies Gold Medal, 2016

Application Count Application Category

Problem Type Count

Antennas 1 Engineering (19)

Biology 2 Science (7) * *

Chemistry 1 Science (7) ClaS SlﬁCathIl 5
Computer vision 2 Computer science (7) .

Electrical engineering 1 Engineering (19) Clu Sterln g 1
Electronics 5 Engineering (19)

Games 6 Games (6) >

Image processing 3 Computer science (7) DeSIgn 20
Mathematics 2 Mathematics (3) . . .

Mechanical engineering 4 Engineering (19) Optlmlzatl()n 8
Medicine 2 Medicine (2) .

Operations research 1 Engineering (19) Pl adnnin g 1
Optics 2 Engineering (19)

Optimization 1 Mathematics (3) .

Photonie | Engineering (19 Programming 4
Physics 1 Science (7) .

Planning 1 Computer science (7) Regres S10N 3
Polymers 1 Engineering (19)

Quantum 3 Science (7)

Security 1 Computer science (7)

Software engineering 3 Engineering (19)

Kannappan, K., L. Spector, M. Sipper, T. Helmuth, W. La Cava, J. Wisdom, and O. Bernstein. 2015. Analyzing
a decade of Human-competitive ("HUMIE") winners -- what can we learn? In Genetic Programming Theory
and Practice XIl. New York: Springer.

Evolution, the Designer

WHAT WOULD DARWIN SAY? | LEE SPECTCR

. . . The Boston Globe
And now, digital evolution

By Lee Spector | August 29, 2005
RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen

through the hand of an intelligent designer. These developments show that

complex and useful designs can indeed emerge from random Darwinian
processes.

“Darwinian evolution is itself a designer worthy of
significant respect, it not religious devotion.”

Outline

Evolving code
Language, variation, selection
Evolving evolution

Connections

(IF-FOOD-AHEAD (MOVE)
(PROGN3 (LEFT)
(PROGN2 (IF-FOOD-AHEAD (MOVE)

(RIGHT))
(PROGN2 (RIGHT)
(PROGN2 (LEFT)
(RIGHT))))

(PROGN2 (IF-FOOD-AHEAD (MOVE)
(LEFT))

(MOVE)))).

IF-FOOD-AHEAD

Koza, 1992

. anguages

|isp-style symbolic expressions (Koza, ...)
Purely functional/lambda expressions (Walsh, Yu, ...)

_inear sequences of machine/byte code (Nordin et al., ...)

Artificial assembly-like languages (Ray, Adami, ...)

Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...)
Graph-structured programs (Teller, Globus, ...)

Object hierarchies (Bruce, Abbott, Schmultter, Lucas, ...)

Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...)

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...)

Push

Programming language for programs that evolve

Simple syntax, but rich data and control structures:
program — instruction | literal | (program™)

Data flows via typed stacks, not syntax

C++, Clojure, Common Lisp, Elixir, Java, Javascript,
Python, Racket, Ruby, Scala, Scheme, Swift, ...

http://pushlanguage.org

http://pushlanguage.org

Push Execution

 Push the program onto the exec stack.

 While exec isn't empty and and we haven't hit the
step limit, pop and do the top:

* |fit's an instruction, execute it.
e |fit's a literal, push it onto the appropriate stack.

* |fit's a block of code, push its elements back onto
the exec stack one at a time.

(1 2 integer add)

B D D DN
Exec Integer Boolean String c e

(1 2 integer add)

B D D DN
Exec Integer Boolean String c e

1

2

integer add

B D D DN
Exec Integer Boolean String c e

1

2

integer add

B D D DN
Exec Integer Boolean String c e

2

integer add 1

B D D DN
Exec Integer Boolean String c e

2

integer add 1

B D D DN
Exec Integer Boolean String c e

2

integer add 1

B D D DN
Exec Integer Boolean String c e

2

integer add 1

B D D DN
Exec Integer Boolean String c e

2

1

B D D DN
Exec Integer Boolean String c e

3

B D D DN
Exec Integer Boolean String c e

true

integer mult false
boolean and 7 true "Hello"
(3 string dup) -20 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

true

false
boolean and 7 true "Hello"
(3 string dup) -20 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

true

false
boolean and true "Hello"
(3 string dup) -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

true

false
boolean and true "Hello"
(3 string dup) -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

true

false
true "Hello"
(3 string dup) -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

true "Hello"
(3 string dup) -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

true "Hello"
(3 string dup) -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

true "Hello"
(3 string dup) -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

3 true "Hello"
string dup -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

3 true "Hello"
string dup -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

3 true "Hello"
string dup -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

3 true "Hello"
string dup -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

3 true "Hello"
string dup -140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false

3 true "Hello"
-140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false "Hello"

3 true "Hello"
-140 true "Push”
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false "Hello"

3 true "Hello"
-140 true "Push"
integer add 100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false "Hello"

3 true "Hello"
-140 true "Push"
100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

false "Hello"

true "Hello"
-137 true "Push"
100 false "Evolution!"

B D D DN
Exec Integer Boolean String c e

Example exec Instructions

Conditionals:
exec 1f exec when

General l00ps:
exec do*while

"For” loops:
exec do*range exec_do*times

Looping over structures:
exec _do*vector integer exec string iterate

Combinators:
exec _k exec y execC s

Auto-Simplification

* Loop:
* Make it randomly simpler
 Keep simpler it as good or better; otherwise revert

* Efficiently and reliably reduces the size of evolved
programs

* Often improves generalization

SUCCESS at generation 20

Succe SS fu l program . (boolean and boolean shove exec _do*count (exec swap (integer empty char yank boolean or

integer fromboolean \space \newline) (exec_dup (char_yank char iswhitespace string butlast inl) string empty boolean frominteger tagged 275
string substring) exec_do*times (integer_ empty string dup) string replacechar print string string rot print char integer fromboolean

string length integer_eq string last boolean swap integer yankdup) string swap string containschar "Wx{ " exec_stackdepth char_ empty

integer swap integer rot string last boolean swap integer yankdup string swap string containschar "Wx{ exec_stackdepth char empty integer_ swap
integer rot integer fromstring string pop string shove char eq char empty integer swap integer rot integer fromstring string pop string shove
char rot integer_ stackdepth integer min char yankdup char eq char empty tagged 349 exec_yank string rot exec_dup (boolean eq string removechar
exec_s (exec_dup (boolean eq exec_rot (exec_s (string eq string fromboolean exec_noop char eq) () (string butlast) integer pop) (char_eq

char empty) (integer swap integer rot string emptystring boolean_ stackdepth integer_ inc inl boolean_shove boolean swap char_ isletter integer gt
integer yankdup) exec_when (string emptystring string nth exec do*range (\space integer yankdup string dup exec_shove (integer swap

string removechar exec_yank string dup exec_empty) char eq exec_do*times (tagged 349 boolean pop exec when (string removechar integer mult
integer_ inc inl boolean_shove boolean_swap char_isletter integer gt string butlast) integer mult string last string parse_ to_chars

boolean frominteger boolean yank exec when (string nth exec_do*range (\space integer yankdup string dup exec_shove (integer swap

string removechar exec_yank integer yank exec_while (boolean or)) char isdigit boolean_ swap char isletter) integer gt integer yankdup

integer mult string last string parse_to chars boolean frominteger char isletter exec when (string nth exec_do*range (\space integer yankdup
string dup exec_shove (integer swap string removechar exec_yank integer yank integer mult integer inc inl boolean_shove boolean_swap
char_isletter integer gt string butlast) boolean_invert second_then_and exec_empty string rot)) boolean_rot char iswhitespace integer_ yank
string conjchar boolean dup) integer add char dup string length integer fromchar string split char isdigit boolean swap boolean eq char isdigit
exec_shove (boolean_ invert second_then_and string empty string conjchar string shove) string fromchar boolean not string stackdepth exec_y ()
integer empty exec_do*range (inl string replace)))))) () ()))

IEI:I:C)I:E;: [0O0OO0OO0O0O0O0O0O0O0O0OO

000O0O0OOOO0OO 0000O0OO0COO
000O0O0OOOO0OO]

00 0 0

00 0 0
Total error: 0.0
Size: 231

00 0 00000O0O0OO0O0O0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODO
00 0 00000O0O0O0O0O0O0OO0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Auto-simplifying with starting size: 231

step: 5000

program: (\space \newline inl string replacechar print string "Wx({
string last inl string removechar string length)

errors: [0O0OOOO0OO

000O0O0OOOO0OO 000O0O0OO0OO0OCO
000O0O0OOOO0OO]

00 0 0

00 0 0
Total error: 0.0
Size: 11

00 0 0000000O0O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
00 0 000000O0O0O0O0ODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Outline

Evolving code
Language, variation, selection
Evolving evolution

Connections

Variation

* Replacement mutations
* Crossover / alternation
« UMAD: Unitform Mutation by Addition and Deletion

2018 GECCO best paper, GP track

UMAD

* [WO passes:

* For each gene, maybe add gene betore or after

* Then, for each gene, maybe delete
* Size neutral it d = a/(1+a)

 Capable of replacement, and so much more

Software Synthesis

e 29 benchmark problems taken from intro CS
textbooks

* Require multiple data types and control structures
* Driven by software tests, input/output pairs

* Used for studies of program synthesis, by us and
by others

7. Replace Space with Newline (P 4.3) Given a
string input, print the string, replacing spaces with
newlines. Also, return the integer count of the non-
whitespace characters. The input string will not have
tabs or newlines.

8. String Differences (P 4.4) Given 2 strings (with-
out whitespace) as input, find the indices at which the
strings have different characters, stopping at the end
of the shorter one. For each such index, print a line
containing the index as well as the character in each
string. For example, if the strings are “dealer” and
“dollars”, the program should print:

leo
2 al
4 e a

B UMAD B Prior Best Operators

100

75

o
L0

Ln
N

918y SS200NS

Patns

* Suppose we have ABC, ADC is a solution, and the
possible genes are just A, B, C, and D

* How many paths are there, of various lengths?

 Count as 1 step:
* Replacement: replace 1 gene
« UMAD: add 1 gene and/or delete 1 gene

* For replacement or UMAD, there is a single 1-step
path, ABC—-ADC

2-step paths, replacement

o 2 paths

* |[f AAC and ACC are unviable, neither path works

2-step paths, UMAD

* 15 paths

AC
AAC
BAC
CAC
DBC
DAC
- ACC -
ABC . . a8 , ADC
ADBC
ADB
ABDC
BDC
ABD
ACA
ACD

ABCDA — ADCDA

Number of Steps Replacement UMAD

3 14 974

Outline

Evolving code
Language, variation, selection
Evolving evolution

Connections

Parent selection

* Jraditionally based on overall scores
* Roulette wheels or tournaments

* Unbalanced, qualitatively diverse test sets

| exicase Selection

e Don't reduce to overall scores

* Jo select single parent:
1. Shuffle test cases
2. First test case — keep best™ individuals
3. Repeat with next test case, etc.
Until one individual remains

* Selected parent may be specialist, not great on
average, but lead to generalists later

Problem name

[exicase Tournament

Replace Space With Newline
Syllables

String Lengths Backwards
Negative To Zero

Double Letters

Scrabble Score

Checksum

Count Odds

57
24
75
72

O O Wn

13

1
18
15

o O OO

Diversity

1.00

0.75 -

-@- lexicase

. tourney

- ifs

Error Diversity
o
o
|

0.25 -

0.00
100 -

Successes
N (6] ~
o (6] o [6)]
| | | |

-—O——-O—O—O—
_.ﬁ;:::t——kll——l—*

I
0 100 200 300

T GPTP-2015

Fig. 1 Replace Space With Newline — error diversity

Outline

Evolving code
Language, variation, selection
Evolving evolution

Connections

Variation

Program Program Program Program
Mutation Crossover

! !

Program Program Program

Variation

Written and configured by humans

Program: Program !Program Program

Program Program Program

Autoconstruction

Program

!

Execute!

!

Program

Autoconstructive Evolution

* Evolve evolution while evolving solutions

* |ndividuals produce and vary their own children,
with methods that are subject to variation

* May produce EC systems more powerful than
those we can write by hand

Diversification Constraints

Parent
Execute! Execute!
Child Child

Parent differs from both children, by different amounts

Synthesis Benchmarks

Number |O, Small or Large, For Loop Index, Compare

String Lengths, Double Le
Replace Space with Newli

ters, Collatz Numbers,
ne, String Differences,

_ast Index of Zero, Vector

Vectors Summed, X-Word

—ven Squares, Wallis Pi, String Lengths Backwards,

Average, Count Odds,

Mirror Image, Super Anagrams, Sum of Squares,

Lines, Pig Latin, Negative

to Zero, Scrabble Score, Word Stats, Checksum,
Digits, Grade, Median, Smallest, Syllables

Solved with PushGP: first with autoconstruction

600 - g

S
o
o
I
-

200 -

Damerau-Levenshtein distance

0 50 100
Generation

Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

2500 -

N
o
-
o
1

1500 - -

Damerau-Levenshtein distance

0 50 100 150 200
Generation

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

Future

* Use autoconstruction to solve other previously
unsolved problems

e Study how autoconstruction works, to improve it

* Consider implications for study of evolution of
biological evolution

Outline

* Evolving code
* Language, variation, selection
* Evolving evolution

e Connections

Connections

* Machine learning

* Software engineering

* Programming languages
* Theory

* Evolutionary biology

* Applications

Takeaways

* Evolving code is fun and useful

* Push is a flexible and powerful representation for
programs that evolve

* UMAD maximizes paths for evolution
* Lexicase selection: don't score; randomly seqguence

* Evolving evolution is fun; may someday be useful

Thanks

 Nic McPhee, Tom Helmuth, Maggie M. Casale, and Julian Oks
« Members of the Hampshire College Computational Intelligence Lab

« Hampshire College for support for the Hampshire College Institute
for Computational Intelligence

« This material is based upon work supported by the National Science
Foundation under Grants No. 1617087, 1129139 and 1331283. Any
opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

