Recent Developments In
Autoconstructive Evolution

Lee Spector, Hampshire College & UMass Amherst
Eva Moscovici, UMass Amherst

Workshop on Evolutionary Computation for the Automated Design of Algorithms (ECADA)
Genetic and Evolutionary Computation Conference (GECCO)
Berlin, Germany; July, 2017

Outline

Autoconstructive evolution

AutoDoG (2016): 4 features and evolution evolves!
e 2 new milestones reached via 2.5 new features

e Future

Motivation

* In nature, the ways in which evolution works itself
evolves, through variation and selection of
mechanisms for variation and selection

* In evolutionary computation, if the evolutionary
process can itself evolve, then it should be
capable of solving more and more difficult
problems

Meta”™

* Individuals are GA/GP configurations; fitness test
includes a full run of a GA/GP system

» Co-evolving populations of problem-solvers and
variation operators

Autoconstruction

* |Individual programs make their own children

* |In doing so, they control their own mutation ana
recombination rates and methods, and in some
cases mate selection, etc.

* The machinery of reproduction and diversification
(i.e., the machinery of evolution) evolves

Evolutionary Computing

Random =3 Assessment =3 Solution

!

Selection

!

Variation

Genetic Programming

Random

— Assessment =3 Software
Programs

!

Selection

!

Variation

Variation in GP

Program Program Program Program
Mutation Crossover

! !

Program Program Program

Variation in GP

Written and configured by humans

Program: Program !Program Program

Program Program Program

Autoconstruction

Program

!

Execute!

!

Program

Autoconstruction

Program

!

Execute!

!

Program

A bit more complicated when genomes distinguished from programs

Autoconstructive Evolution

* Evolve evolution while evolving solutions

 How? Individuals produce and vary their own
children, with methods that are subject to variation

* Requires understanding the evolution of variation

 Hope: May produce EC systems more powerful
than we can write by hand

Autoconstructive Evolution

* A 15 year old project (building on older and
broader-based ideas)

* Like genetic programming, but harder and less
successful! But with greater potential”?

« GECCO-2016: AutoDoG, sometimes solve
significant problems, intriguing patterns of
evolving evolution

 Push makes it easy and natural

Push

Programming language for programs that evolve
Data flows via per-type stacks, not syntax

Trivial syntax, rich data and control structures
PushGP: GP system that evolves Push programs

C++, Clojure, Common Lisp, Elixir, Java, Javascript,
Python, Racket, Ruby, Scala, Scheme, Swift

http://pushlanguage.org

Early Autoconstruction

Demonstrated that selection can promote diversity
Exhibited dynamics of diversification and adaptation
Weak problem-solving power

Difficult to analyze results, compare to ordinary
genetic programming, or generalize

GECCO-2016 (ECADA)

Evolution Evolves with Autoconstruction

Lee Spector Nicholas Freitag McPhee Thomas Helmuth
School of Cognitive Science Div. of Science & Mathematics Dept. of Computer Science
Hampshire College U. Minnesota, Morris Washington and Lee U.
Amherst, Massachusetts, USA Morris, Minnesota, USA Lexington, Virginia, USA
Ispector@hampshire.edu mcphee@morris.umn.edu helmutht@wlu.edu
Maggie M. Casale Julian Oks
Div. of Science & Mathematics School of Cognitive Science
U. Minnesota, Morris Hampshire College

Morris, Minnesota, USA Amherst, Massachusetts, USA
casal033@morris.umn.edu juao15@hampshire.edu

AutoDoG (GECCO-2016)

Autoconstructive Diversification of Genomes

1. Construct genomes, not programs

2. Distinct mode/phase for construction of offspring
3. Select combinatorially, not on aggregate error

4. Enforce diversification constraints

[1. Construct genomes, not programs]

* Previous: Push programs, on code stacks, Lisp-
iInspired code-manipulation instructions

e AutoDoG: Plush genomes, linear with epigenetic
markers, translated to Push programs prior to
running

Plush

Close!?
Silence!? 1 0 0 1 0

e Linear genomes for Push programs

* Facilitates useful placement of code blocks

Permits uniform linear genetic operators

Allows for epigenetic hill-climbing

Table 1: Genome instructions in AutoDoG

Instruction Description
close_dec Decrement close marker on a gene
close_inc Increment close marker on a gene
dup Duplicate top genome
empty Boolean, is genome stack empty?
eq Boolean, are top genomes equal?
flush Empty genome stack
gene_copy Copy gene from genome to genome

gene_copy_range
gene_delete
gene_dup
gene_randomize
new
parentl
parent?2
pop
rot
rotate
shove
silence
stackdepth
swap
toggle_silent
unsilence
yank
yankdup

Copy genome segment

Remove gene

Duplicate gene

Replace with random

Push empty genome

Push first parent’s genome

Push second parent’s genome
Remove top genome

Rotate top 3 genomes on stack
Rotate sequence of top genome
Insert top genome deep in stack
Add epigenetic silencing marker
Push integer depth of genome stack
Exchange top two genomes

Reverse silencing of a gene

Remove epigenetic silencing marker
Pull genome from deep in stack
Copy genome from deep in stack

[2. Distinct mode/phase for construction of offspring]

* Previous: Various; sometimes during error testing,
sometimes with problem inputs, sometimes with
imposed but controllable variation

e AutoDoG: Only within the autoconstruction
genetic operator, entirely by the program itself

» Construction: inputs are no-ops

e Error testing: rand instructions are constants

[3. Select combinatorially, not on aggregate error]

* Previous: Parents selected using standard, error
aggregating methods (tournament selection)

 AutoDoG: Lexicase selection

| exicase Selection

* Jo select single parent:
1. Shuffle test cases
2. First test case — keep best individuals
3. Repeat with next test case, etc.
Until one individual remains

* Selected parent may be specialist, not great on
average, but lead to generalists later

* Epsilon for tloats; leaky in experiments below

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 1

Solving Uncompromising Problems with Lexicase
Selection

Thomas Helmuth, Lee Spector Member, IEEE, James Matheson

Abstract—We describe a broad class of problems, called
“uncompromising problems,” characterized by the requirement
that solutions must perform optimally on each of many test cases.
Many of the problems that have long motivated genetic program-
ming research, including the automation of many traditional pro-
gramming tasks, are uncompromising. We describe and analyze
the recently proposed “lexicase” parent selection algorition and
show that it can facilitate the solution of uncompromising prob-
lems by genetic programming. Unlike most traditional parent
selection techniques, lexicase selection does not base selection on
a fitness value that is aggregated over all test cases; rather, it con-
siders test cases one at a time in random order. We present results
comparing lexicase selection to more traditional parent selection
methods, including standard tournament selection and implicit
fitness sharing, on four uncompromising problems: finding terms
in finite algebras, designing digital multipliers, counting words in
files, and performing symbolic regression of the factorial function.
We provide evidence that lexicase selection maintains higher
levels of population diversity than other selection methods, which
may partially explain its utility as a parent selection algorithm
in the context of uncompromising problems.

Index Terms—parent selection, lexicase selection, tournament
selection, genetic programming, PushGP.

I. INTRODUCTION

ENETIC programming problems generally involve test
cases that are used to determine the performance o”
programs during evolution. While some classic genetic
gramming problems, such as the artificial ant problem a-
lawnmower problem [1], involve only single test ca-
others involve large numbers of tests. There are s
in which a genetic programming system can
test cases into consideration during parent s
when determining which individuals to us~
when producing offspring for the nex’
best choice may depend on the type
For some problems it may be be
that seek “compromises” amor

Manuscript received Novembe~
5, 2014. This material is based
Foundation under Grants Ne
findings, and conclusions
are those of the authors
Science Foundation.

T. Helmuth is
ence, Universit
muth@cs.unm

L. Spec’
Ispector”

J_ »

r

example, we can imagine a problem involving control of

simulated wind turbine in which some test cases focus

performance in low wind conditions while others for

performance in high wind conditions. It may not be p

optimize performance on all of these test cases sim

and some sort of compromise may therefore

Many common parent selection approaches

ment selection, introduce compromises br

aggregating the performance of an ir

cases into a single fitness value. Tb

may be as simple as summing

squares, into a single error valr

as implicit fitness sharing I”

based on population statj- G PT P_ 2 O 1 5
By contrast, we wis*

mising” problems: p

must perform as

perform on th?’

is a probler

brer Problem name Lexicase Tournament IFS

for go

pro¥

. Replace Space With Newline 57 13 17
Syllables 24 1 2
String Lengths Backwards 75 18 12
Negative To Zero 72 15
Double Letters
Scrabble Score
Checksum
Count Odds

A O O W
O OO
SO OO0

Diversity

1.00
0.75 -
2
@ -@- |exicase
g
0 0.50 - . tourney
o
= - ifs
L
0.25 -
0.00
100 +
3
9, 75 -
8 50- o —————0——O— 00—
= -
0 - T 1 I I
0 100 200 300
Generation

GPTP-2015

Fig. 1 Replace Space With Newline — error diversity

[4. Enforce diversification constraints]

* Previous: Various, including all but clones, or those
In lineages making progress

e AutoDoG: Must satisty diversification constraints on
reproductive behavior, determined from a cascade
of temporary descendants

Diversification Constraints

Parent
Execute! Execute!
Child Child

e Parent/child program differences positive; not same

 Many variants possible

Software Synthesis
Benchmarks (GECCO 2015)

Number 10O, Small or Large, For Loop Index, Compare
String Lengths, Double Letters, Collatz Numbers,
Replace Space with Newline, String Differences,
Even Squares, Wallis Pi, String Lengths Backwards,
Last Index of Zero, Vector Average, Count Odds,
Mirror Image, Super Anagrams, Sum of Squares,
Vectors Summed, X-Word Lines, Pig Latin, Negative
to Zero, Scrabble Score, Word Stats, Checksum,
Digits, Grade, Median, Smallest, Syllables

Solved with PushGP; only with autoconstruction

7. Replace Space with Newline (P 4.3) Given a
string input, print the string, replacing spaces with
newlines. Also, return the integer count of the non-
whitespace characters. The input string will not have

tabs or newlines.

* Multiple types, looping, multiple tasks

 PushGP can achieve success rates up to ~95% in
300 generations

e AutoDoG 2016 succeeded 5-10%

(@)

o

o
1

H
o
o
[
-~

200 -

Damerau-Levenshtein distance

0 50 100
Generation

Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

2500

N
o
o
o
1

1500 - .

Damerau-Levenshtein distance

0 50 100 150 200
Generation

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

400

300 -

Genome size
N
o
o
1

100 -

0 50 100
Generation

Figure 2: Genome sizes during a single non-
autoconstructive run of GP on the Replace Space
With Newline problem

800 - E———

600 -

Genome size
S
o
()
1

200

0 50 100 150 200
Generation

Figure 4: Genome sizes during a single autocon-
structive run of GP on the Replace Space With
Newline problem

Ancestors of Solutions
Replace Space with Newlines

07 1 T T (07 i ST 0) G
Y TR (T I e N - R T) ey
TR

2 New Milestones

 Autoconstructive evolution can succeed as much
and as fast as non-autoconstructive evolution

* Autoconstructive evolution can solve a problem not
yet solved without it

2.5 New Features

* DSL for uniform genome manipulation
e Entropy

* Age-Mediated Parent Selection (AMPS)

DSL for Uniform Genome

Manipulation

genome alternation

genome_genesis

genome new

genome parentl

genome parent2

genome uniform addition

genome uniform addition and deletion
genome uniform boolean mutation
genome uniform close mutation

genome uniform combination and deletion
genome uniform crossover

genome uniform deletion

genome uniform float mutation

genome uniform instruction mutation
genome uniform integer mutation
genome uniform silence mutation
genome uniform string mutation
genome uniform tag mutation

genome dup
genome_empty
genome_eq
genome_ flush
genome_pop
genome_rot
genome_rotate
genome_ shove
genome stackdepth
genome_swap
genome yank
genome yankdup

Entropy

« Random gene deletions after autoconstruction
e Like "cosmic ray mutations” but purely destructive

* All new genetic material must stem from
autoconstructive instructions

* Lineages must counteract entropy to survive

e Default rate: 0.1

https://xkcd.com/1862/

ENTROPY

(THIS ALREADY HAS LIKE

20 DIFFERENT (ONFUSING
MEANINGS, S0 IT PROBABLY
MEANS SOMETHING HERE, TOO) ~_

PARTICLE. PROPERTIES IN PHYSICS

N

ELECTRIC
CHARGE

MASS
SPIN NUMBER
FLAVOR

COLOR
CHARGE

MooD

AUGNMENT

HIT POINTS
RATING
STRING TYPE

BATTING
AVERAGE

PROOF
HEAT
STREET VALE

ENTROPY

-1 O +

*———0———0
0 v 2
o1 1115
-1 40 % |
<0 0—10->
(MISC.. QUANTUN NUMBERS)
R"\I/*G (QUARKS ONLY)
> @Q Y,
B

@0 e
R e

GOOD-EVIL,
LAJFUL-CHAOTIC

(o}
[e

FRKIW
BYTESTRING-CHARSTRING

0% 100
L1113

$0 $100 $200
._l_l_l_l_haa

(THIS ALREADY HAS LIKE

20 DIFFERENT (ONFUSING
MEANINGS, 50 IT PROBABLY
MEANS SOMETHING HERE, T00)

Age-Mediated Parent
Selection (AMPS)

Use genealogical age to bias in tavor of youth

Like ALPS (but simpler), and age-fitness Pareto
optimization (but for parent selection)

For each parent, consider only younger than a limit
chosen randomly from ages in the population

Options for age-combining functions; for
autoconstruction: age of executing parent +
maximum similarity with a parent, scaled to [0,1]

Rivaling Ordinary PushGP

e Uniform DSL + Entropy + AMPS

* |In 20 runs, 75% success within 300 generations on
Replace Space With Newline (100% by generation
628); 80% on Mirror Image

e Surprisingly, rivals ordinary GP on a problem that
ordinary GP can solve

8. String Differences (P 4.4) Given 2 strings (with-
out whitespace) as input, find the indices at which the
strings have different characters, stopping at the end
of the shorter one. For each such index, print a line
containing the index as well as the character in each
string. For example, if the strings are “dealer” and
“dollars”, the program should print:

1l eo
2 al
4 e a

Extending the Reach of GP

» Without autoconstruction, string difference not yet
solved by GP, despite many efforts/configurations

e 3 autoconstructive solutions so far, with Uniform
DSL + Entropy

First Evolved Solution

* Makes children using uniform addition, with a rate
(~0.0921) close to the entropy rate (0.1)

» Solves problem in general way, with a few clever
tricks (like using the depth of the boolean stack to
track the comparison index)

Future

e Use autoconstruction to solve other previously
unsolved problems

e Study how autoconstruction works, to improve it

e Consider implications for study of evolution of
biological evolution

Thanks

* Nic McPhee, Tom Helmuth, Maggie M. Casale, and Julian Oks
« Members of the Hampshire College Computational Intelligence Lab

 Hampshire College for support for the Hampshire College Institute
for Computational Intelligence

« This material is based upon work supported by the National Science
Foundation under Grants No. 1617087, 1129139 and 1331283. Any
opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

