
Recent Developments in
Autoconstructive Evolution
Lee Spector, Hampshire College & UMass Amherst
Eva Moscovici, UMass Amherst

Workshop on Evolutionary Computation for the Automated Design of Algorithms (ECADA)
Genetic and Evolutionary Computation Conference (GECCO)
Berlin, Germany; July, 2017

Outline

• Autoconstructive evolution

• AutoDoG (2016): 4 features and evolution evolves!

• 2 new milestones reached via 2.5 new features

• Future

Motivation

• In nature, the ways in which evolution works itself
evolves, through variation and selection of
mechanisms for variation and selection

• In evolutionary computation, if the evolutionary
process can itself evolve, then it should be
capable of solving more and more difficult
problems

Meta*

• Individuals are GA/GP configurations; fitness test
includes a full run of a GA/GP system

• Co-evolving populations of problem-solvers and
variation operators

Autoconstruction

• Individual programs make their own children

• In doing so, they control their own mutation and
recombination rates and methods, and in some
cases mate selection, etc.

• The machinery of reproduction and diversification
(i.e., the machinery of evolution) evolves

Evolutionary Computing

Random Assessment

Selection

Variation

Solution

Genetic Programming

Random
Programs Assessment

Selection

Variation

Software

Variation in GP

Program

Mutation

Program

Program

Crossover

Program

Program Program

Program

Variation in GP

Program

Mutation

Program

Program

Crossover

Program

Program Program

Program

Written and configured by humans

Autoconstruction

Program

Execute!

Program

Program Program ProgramProgramProgram Program

Autoconstruction

Program

Execute!

Program

Program Program ProgramProgramProgram Program

A bit more complicated when genomes distinguished from programs

Autoconstructive Evolution

• Evolve evolution while evolving solutions

• How? Individuals produce and vary their own
children, with methods that are subject to variation

• Requires understanding the evolution of variation

• Hope: May produce EC systems more powerful
than we can write by hand

Autoconstructive Evolution
• A 15 year old project (building on older and

broader-based ideas)

• Like genetic programming, but harder and less
successful! But with greater potential?

• GECCO-2016: AutoDoG, sometimes solve
significant problems, intriguing patterns of
evolving evolution

• Push makes it easy and natural

Push
• Programming language for programs that evolve

• Data flows via per-type stacks, not syntax

• Trivial syntax, rich data and control structures

• PushGP: GP system that evolves Push programs

• C++, Clojure, Common Lisp, Elixir, Java, Javascript,
Python, Racket, Ruby, Scala, Scheme, Swift

• http://pushlanguage.org

Early Autoconstruction

• Demonstrated that selection can promote diversity

• Exhibited dynamics of diversification and adaptation

• Weak problem-solving power

• Difficult to analyze results, compare to ordinary
genetic programming, or generalize

GECCO-2016 (ECADA)

AutoDoG (GECCO-2016)

Autoconstructive Diversification of Genomes

1. Construct genomes, not programs

2. Distinct mode/phase for construction of offspring

3. Select combinatorially, not on aggregate error

4. Enforce diversification constraints

[1. Construct genomes, not programs]

• Previous: Push programs, on code stacks, Lisp-
inspired code-manipulation instructions

• AutoDoG: Plush genomes, linear with epigenetic
markers, translated to Push programs prior to
running

Plush

integer_eq exec_dup char_swap integer_add exec_if

2 0 0 0 1

1 0 0 1 0

Instruction
Close?

Silence?

• Linear genomes for Push programs

• Facilitates useful placement of code blocks

• Permits uniform linear genetic operators

• Allows for epigenetic hill-climbing

[2. Distinct mode/phase for construction of offspring]

• Previous: Various; sometimes during error testing,
sometimes with problem inputs, sometimes with
imposed but controllable variation

• AutoDoG: Only within the autoconstruction
genetic operator, entirely by the program itself

• Construction: inputs are no-ops

• Error testing: rand instructions are constants

[3. Select combinatorially, not on aggregate error]

• Previous: Parents selected using standard, error
aggregating methods (tournament selection)

• AutoDoG: Lexicase selection

Lexicase Selection

• To select single parent:  
1. Shuffle test cases  
2. First test case – keep best individuals  
3. Repeat with next test case, etc.  
Until one individual remains

• Selected parent may be specialist, not great on
average, but lead to generalists later

• Epsilon for floats; leaky in experiments below

GPTP-2015

Diversity

GPTP-2015

[4. Enforce diversification constraints]

• Previous: Various, including all but clones, or those
in lineages making progress

• AutoDoG: Must satisfy diversification constraints on
reproductive behavior, determined from a cascade
of temporary descendants

Diversification Constraints
Parent

Execute!

Child

Execute!

Child

• Parent/child program differences positive; not same

• Many variants possible

Software Synthesis
Benchmarks (GECCO 2015)
Number IO, Small or Large, For Loop Index, Compare
String Lengths, Double Letters, Collatz Numbers,
Replace Space with Newline, String Differences,
Even Squares, Wallis Pi, String Lengths Backwards,
Last Index of Zero, Vector Average, Count Odds,
Mirror Image, Super Anagrams, Sum of Squares,
Vectors Summed, X-Word Lines, Pig Latin, Negative
to Zero, Scrabble Score, Word Stats, Checksum,
Digits, Grade, Median, Smallest, Syllables

Solved with PushGP; only with autoconstruction

• Multiple types, looping, multiple tasks

• PushGP can achieve success rates up to ~95% in
300 generations

• AutoDoG 2016 succeeded 5-10%

Ancestors of Solutions
Replace Space with Newlines

AutoconstructionStandard Operators

2 New Milestones

• Autoconstructive evolution can succeed as much
and as fast as non-autoconstructive evolution

• Autoconstructive evolution can solve a problem not
yet solved without it

2.5 New Features

• DSL for uniform genome manipulation

• Entropy

• Age-Mediated Parent Selection (AMPS)

DSL for Uniform Genome
Manipulation
genome_alternation
genome_genesis
genome_new
genome_parent1
genome_parent2
genome_uniform_addition
genome_uniform_addition_and_deletion
genome_uniform_boolean_mutation
genome_uniform_close_mutation
genome_uniform_combination_and_deletion
genome_uniform_crossover
genome_uniform_deletion
genome_uniform_float_mutation
genome_uniform_instruction_mutation
genome_uniform_integer_mutation
genome_uniform_silence_mutation
genome_uniform_string_mutation
genome_uniform_tag_mutation

genome_dup
genome_empty
genome_eq
genome_flush
genome_pop
genome_rot
genome_rotate
genome_shove
genome_stackdepth
genome_swap
genome_yank
genome_yankdup

Entropy

• Random gene deletions after autoconstruction

• Like "cosmic ray mutations" but purely destructive

• All new genetic material must stem from
autoconstructive instructions

• Lineages must counteract entropy to survive

• Default rate: 0.1

https://xkcd.com/1862/

Age-Mediated Parent
Selection (AMPS)
• Use genealogical age to bias in favor of youth

• Like ALPS (but simpler), and age-fitness Pareto
optimization (but for parent selection)

• For each parent, consider only younger than a limit
chosen randomly from ages in the population

• Options for age-combining functions; for
autoconstruction: age of executing parent +
maximum similarity with a parent, scaled to [0,1]

Rivaling Ordinary PushGP

• Uniform DSL + Entropy + AMPS

• In 20 runs, 75% success within 300 generations on
Replace Space With Newline (100% by generation
628); 80% on Mirror Image

• Surprisingly, rivals ordinary GP on a problem that
ordinary GP can solve

Extending the Reach of GP

• Without autoconstruction, string difference not yet
solved by GP, despite many efforts/configurations

• 3 autoconstructive solutions so far, with Uniform
DSL + Entropy

First Evolved Solution

• Makes children using uniform addition, with a rate
(~0.0921) close to the entropy rate (0.1)

• Solves problem in general way, with a few clever
tricks (like using the depth of the boolean stack to
track the comparison index)

Future

• Use autoconstruction to solve other previously
unsolved problems

• Study how autoconstruction works, to improve it

• Consider implications for study of evolution of
biological evolution

Thanks

• Nic McPhee, Tom Helmuth, Maggie M. Casale, and Julian Oks

• Members of the Hampshire College Computational Intelligence Lab

• Hampshire College for support for the Hampshire College Institute
for Computational Intelligence

• This material is based upon work supported by the National Science
Foundation under Grants No. 1617087, 1129139 and 1331283. Any
opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

