
What’s in an evolved name?
The evolution of modularity

via tag-based reference

Lee Spector, Kyle Harrington, Brian Martin & Thomas Helmuth

Cognitive Science, Hampshire College
Computer Science, Brandeis University

Computer Science, University of Massachusetts, Amherst

Outline

• GP with expressive languages: Push

• Modularity in GP

• Tags

• Tag-based modularity in GP

Evolutionary Computation

Genetic Programming

• Evolutionary computing to produce
executable computer programs.

• Programs are tested by executing them.

Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Expressive Languages

• Multiple data types

• User-defined procedures & functions

• User-defined macros & control structures

• User-defined representations

• Dynamic definition & redefinition

• Push provides all of the above and more, all
without any mechanisms beyond the stack-
based execution architecture

Expressive Languages

• Multiple data types

• User-defined procedures & functions

• User-defined macros & control structures

• User-defined representations

• Dynamic definition & redefinition

• Push provides all of the above and more, all
without any mechanisms beyond the stack-
based execution architecture

Types
• Most useful programs manipulate multiple

data types.

• Single type or multiple type closures.

• Strongly typed genetic programming:
constraints on code generation and genetic
operators (Montana).

• Polymorphism (Yu and Clack).

• Stack-based GP with typed stacks (Spector).

Modules
• Automatically-defined functions (Koza)

• Automatically-defined macros (Spector)

• Architecture-altering operations (Koza)

• Module acquisition/encapsulation systems
(Kinnear, Roberts, many others)

• Push approach: instructions that can build/
execute modules with no changes to the
system’s representations or algorithms

We will return to this later!

Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code,
exec, vector, matrix, quantum gate, [add more as
needed]

• Missing argument? NOOP

• Trivial syntax:
program → instruction | literal | (program*)

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

2

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE 3

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6

exec code bool int float

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

FLOAT.+

TRUE

FALSE 5.2

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

Same Results

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE
3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+)

(3.14 CODE.REVERSE
CODE.CDR IN IN

5.0 FLOAT.>
(CODE.QUOTE FLOAT.*)

CODE.IF)

(3.14 CODE.REVERSE
CODE.CDR IN IN

5.0 FLOAT.>
(CODE.QUOTE FLOAT.*)

CODE.IF)

exec code bool int float

(3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF)

IN=4.0

3.14

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(3.14 CODE.REVERSE

CODE.CDR IN IN
5.0 FLOAT.>

(CODE.QUOTE FLOAT.*)
CODE.IF)

exec code bool int float

CODE.REVERSE

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(3.14 CODE.REVERSE

CODE.CDR IN IN
5.0 FLOAT.>

(CODE.QUOTE FLOAT.*)
CODE.IF)

3.14

exec code bool int float

CODE.CDR

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
(CODE.IF (CODE.QUOTE
FLOAT.*) FLOAT.> 5.0 IN

IN CODE.CDR
CODE.REVERSE 3.14)

3.14

exec code bool int float

IN

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

IN

5.0

FLOAT.>

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

5.0

FLOAT.> 4.0

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

3.14

exec code bool int float

(CODE.QUOTE FLOAT.*) 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

CODE.QUOTE

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

FLOAT.* 4.0

CODE.IF
((CODE.QUOTE FLOAT.*)

FLOAT.> 5.0 IN IN
CODE.CDR

CODE.REVERSE 3.14)

FALSE 3.14

exec code bool int float

4.0

FLOAT.* 3.14

exec code bool int float

12.56

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./)

(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.*)
10.0 FLOAT./)

IN=4.0

IN

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./)

exec code bool int float

EXEC.DUP

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

(3.13 FLOAT.*)

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

3.13

FLOAT.*

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

FLOAT.*

(3.13 FLOAT.*)

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 4.0

exec code bool int float

(3.13 FLOAT.*)

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

3.13

FLOAT.*

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

FLOAT.*

10.0 3.13

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 12.52

exec code bool int float

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float

10.0

FLOAT./ (IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 39.1876

exec code bool int float

(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT./) 3.91876

exec code bool int float

Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE.DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

Combinators

• Standard K, S, and Y combinators:

• EXEC.K removes the second item from the EXEC stack.

• EXEC.S pops three items (call them A, B, and C) and
then pushes (B C), C, and then A.

• EXEC.Y inserts (EXEC.Y T) under the top item (T).

• A Y-based “while” loop:
(EXEC.Y
 (<BODY/CONDITION> EXEC.IF
 () EXEC.POP))

Named Subroutines

(TIMES2 EXEC.DEFINE (2 INTEGER.*))

We will return to this later!

Auto-simplification

Loop:

Make it randomly simpler

If it’s as good or better: keep it

Otherwise: revert

Demonstration Results

• Symbolic regression

• Artificial ant

• Boolean problems (e.g. parity, multiplexer)

• List operations (e.g. reversing, sorting)

• ... others

The Odd Problem

• Integer input

• Boolean output

• Was the input odd?

•((code.nth) code.atom)

• Individuals make their own children.

• Agents thereby control their own mutation
rates, sexuality, and reproductive timing.

• The machinery of reproduction and
diversification (i.e., the machinery of evolution)
evolves.

• Radical self-adaptation.

Autoconstructive
Evolution

Modularity is Everywhere

ADFs
• All programs in the population have the

same, pre-specified architecture

• Genetic operators respect that architecture

• (progn (defn adf0 (arg0 arg1) ...)
 (defn adf1 (arg0 arg1 arg2) ...)
 (.... (adf1 ...) (adf0 ...) ...))

•Complicated, brittle, limited...

•Architecture-altering operations: more so

Modules in Push1

• Code stack manipulation:
(3 code quote (1 integer +)
dup do code do)

• Named modules (complex and never used
in evolved results!)

Modularity
Ackley and Van Belle

Modularity via Push1

Modules in Push3
• Execution stack manipulation:

(3 exec.dup (1 integer.+))

Can be more complex, and has produced nice
results, but tricky in complex contexts

• Named modules:
(plus1 exec.define (1 integer.+)) ... plus1

Simpler than in Push1; general but coordinating
definitions/references is tricky and this also
never arises in evolution!

• How can we do better?

Tag-Mediated Altruism

• Tags = arbitrary identifiers (Holland, 1995)

• Riolo et al. (Nature, 2001) showed that
altruism based only on tag similarity can
evolve in simple simulations.

• Roberts & Sherratt (Nature, 2002) claimed
that Riolo et al.’s result held only when
agents with identical tags were required to
donate to one another.

Genetic Stability
and Territorial Structure

Spector, L., and Klein, J. Genetic stability and territorial structure facilitate
the evolution of tag-mediated altruism. In Artificial Life.

Tags in Push
• Tags are integers embedded in instruction names

• Instructions like tag.exec.123 tag values

• Instructions like tagged.456 recall values by
closest matching tag

• If a single value has been tagged then all tag
references will recall values

• The number of tagged values can grow
incrementally over evolutionary time

Lawnmower Problem

• Used by Koza to demonstrate utility of ADFs
for scaling GP up to larger problems

>

Lawnmower Instructions

Lawnmower Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

100000

200000

300000

400000

500000

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec

Dirt-Sensing, Obstacle-
Avoiding Robot Problem

Like the lawnmower problem but harder and
less uniform

>

DSOAR Instructions

DSOAR Effort

8x4 8x6 8x8 8x10 8x12
Problem Size

0

5x107

1x108

1.5x108

2x108

2.5x108

3x108

C
om

pu
ta

tio
na

l E
ffo

rt

Basic
Tag
Exec

Evolved DSOAR
Architecture (in one environment)

Module0

Module1

3 Module2

1

Module4
1

Module3
2 5

Module7

2 2 3

1

Module8

3

2 4

3 8

Module5

3 9

Module6

1 5

Evolved DSOAR
Architecture (in another environment)

Module0

Module2

1

Module9

1

Module10

1

Module11

1

Module12
1

Module3
2 8

Module13

1 8

Module14

2 6

Module4

2 7

2 6

Module5

3 8

1 1

1 2

Tags in S-Expressions

• A simple form:
(progn (tag-123 (+ a b)) tagged-034)

• Must do something about endless recursion

• Must do something about return values

• Must do something fancy to support
modules with arguments, particularly
arguments of multiple types.

Future Work

• Tags in s-expression-based GP

• Tag usage over evolutionary time

• No-pop tagging in PushGP

• Tags in autoconstructive evolution

• Applications, application, applications

Conclusions

• Execution stack manipulation supports the
evolution of modular programs in many
situations

• Tag-based modules are more effective in
complex, non-uniform problem
environments

• Tag-based modules may help to evolve
complex software and solutions to unsolved
problems in the future

