
Tag-based Modularity in
Tree-based Genetic

Programming
Lee Spector, Kyle Harrington & Thomas Helmuth

Cognitive Science, Hampshire College
Computer Science, Brandeis University

Computer Science, University of Massachusetts, Amherst

Outline

• Evolving modular programs

• Tags

• Evolving tag-based modules in PushGP

• Can we do the same thing in tree-based GP?

• Experiments and Conclusions

• Prospects

Modularity is Everywhere

Modules in GP
• Automatically-defined functions (Koza),

macros (Spector)

• Architecture-altering operations (Koza)

• Module acquisition/encapsulation systems
(Kinnear, Roberts, many others)

• Modules in GE (Swafford et al., others)

• In Push: code-manipulation instructions that
build/execute modules as programs run

ADFs

• All programs in the population have the
same, pre-specified architecture

• Genetic operators respect that architecture

• (progn (defn adf0 (arg0 arg1) ...)
 (defn adf1 (arg0 arg1 arg2) ...)
 (.... (adf1 ...) (adf0 ...) ...))

•Complicated, brittle, limited...

•Architecture-altering operations: more so

Tags
• Roots in John Holland’s work on principles

of complex adaptive systems

• Applied in models of the evolution of
altruism, with agents having tags and tag-
difference thresholds for donation

• A tag is an initially meaningless identifier that
can come to have meaning through the
matches in which it participates

• Matches may be inexact

Tag-based Modules in GP
• Add mechanisms for tagging code

• Add mechanisms for retrieving/branching to
code with closest matching tag

• As long as any code has been tagged, all branches
go somewhere

• Number of tagged modules can grow
incrementally over evolutionary time

• We use integer tags and unidirectional difference
with wraparound for inexact matching

Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code,
exec, vector, matrix, quantum gate, [add more as
needed]

• Missing argument? NOOP

• Trivial syntax:
program → instruction | literal | (program*)

Evolved DSOAR
Architecture (in one environment)

Module0

Module1

3 Module2

1

Module4
1

Module3
2 5

Module7

2 2 3

1

Module8

3

2 4

3 8

Module5

3 9

Module6

1 5

Prior Conclusions

• Execution stack manipulation supports the
evolution of modular programs in many
situations

• Tag-based modules are more effective in
complex, non-uniform problem
environments

• Tag-based modules may help to evolve
complex software and solutions to unsolved
problems in the future

Tags in S-Expressions
• A simple form:

(progn (tag-123 (+ a b)) tagged-034)

• Challenges:

• Endless recursion

• Return values (of tagging and of tag
references prior to tagging)

• Arguments, particularly of multiple types

• Multiple return values from modules

Endless Recursion

• Here we enforce an execution step limit and
(generally) penalize programs that exceed it

• In Push results may be available even when
execution is terminated for hitting the limit

Return Values
• Of tagging: we consider:

• “silent”: return default constant value without
executing tagged code

• “non-silent”: evaluate the tagged code and
return its value

• Of tag references prior to tagging: here we
return a default constant value

• In Push it is trivial to provide no return value in
all of these cases

Arguments

• Here we allow only 0-argument modules

• There’s a tricky way in which the tag space
itself can conceivably be used to pass
arguments anyway (see paper)

• In Push any number of arguments may be
provided without doing anything special

Multiple Return Values

• Basically we ignore this here, although again
the tag space could conceivably be used to do
something similar

• In Push it is trivial to return any number of
values

Lawnmower Problem

• Used by Koza to demonstrate utility of ADFs
for scaling GP up to larger problems

>

Lawnmower Results

Even 4-Parity Results

First Conclusion

• The very simple form of “tags in trees”
considered here is not always good!

• The remainder of our paper considers less
simple approaches that may be better

Unbounded Recursion

• Penalties for hitting the execution limit may
make tags too “dangerous”

• Note: we did not use penalties for the
Lawnmower problem, since it works by side
effects on the lawn state

• Various approaches are possible for eliminating
rather than penalizing unbounded recursion

Arguments

• Pseudo-argument symbols like arg0, arg1,
etc., which get replaced by values passed in
as arguments to argument-taking tag-
reference functions like tagged-1-arg,
tagged-2-arg, etc.

• Defaults for args in wrong contexts

• Pre-specify maximum number of args

• Tag references with embedded argument
reference tags

Program Size and Depth

• In the simple scheme presented here, tagging
and tag references increase tree size and depth

• Depth and size limits therefore punish tag usage

• Tagging and tag-reference calls can be omitted
from counts/limits in various ways

• Alternative syntax may involve less impact on
size and depth

More Conclusions

• Trees are constraining!

• Tags may nonetheless be useful in tree-based GP

• Everyone should use Push ;-)

• Tag-based modules may also be a good fit to
other forms of GP, e.g. Cartesian GP and
Grammatical Evolution

Thanks
This material is based upon work supported by the National
Science Foundation under Grant No. 1017817. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not
necessarily reflect the views of the National Science
Foundation. Thanks also to Omri Bernstein, Emma Tosch,
Kwaku Yeboah Antwi, and Rebecca S. Neimark for discussions
related to this work, to Josiah Erikson for systems support,
and to Hampshire College for support for the Hampshire
College Institute for Computational Intelligence.

