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Modularity is Everywhere



Modules in GP
• Automatically-defined functions (Koza), 

macros (Spector)

• Architecture-altering operations (Koza)

• Module acquisition/encapsulation systems 
(Kinnear, Roberts, many others)

• Modules in GE (Swafford et al., others)

• In Push: code-manipulation instructions that 
build/execute modules as programs run



ADFs

• All programs in the population have the 
same, pre-specified architecture

• Genetic operators respect that architecture

• (progn (defn adf0 (arg0 arg1) ...)
       (defn adf1 (arg0 arg1 arg2) ...)
   (.... (adf1 ...) (adf0 ...) ...))

•Complicated, brittle, limited... 

•Architecture-altering operations: more so



Tags
• Roots in John Holland’s work on principles 

of complex adaptive systems

• Applied in models of the evolution of 
altruism, with agents having tags and tag-
difference thresholds for donation

• A tag is an initially meaningless identifier that 
can come to have meaning through the 
matches in which it participates

• Matches may be inexact



Tag-based Modules in GP
• Add mechanisms for tagging code

• Add mechanisms for retrieving/branching to 
code with closest matching tag

• As long as any code has been tagged, all branches 
go somewhere

• Number of tagged modules can grow 
incrementally over evolutionary time

• We use integer tags and unidirectional difference 
with wraparound for inexact matching



Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, Boolean, name, code, 
exec, vector, matrix, quantum gate, [add more as 
needed]

• Missing argument? NOOP

• Trivial syntax:
program → instruction | literal | ( program* )
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Prior Conclusions

• Execution stack manipulation supports the 
evolution of modular programs in many 
situations

• Tag-based modules are more effective in 
complex, non-uniform problem 
environments

• Tag-based modules may help to evolve 
complex software and solutions to unsolved 
problems in the future



Tags in S-Expressions
• A simple form:

(progn (tag-123 (+ a b)) tagged-034)

• Challenges:

• Endless recursion

• Return values (of tagging and of tag 
references prior to tagging)

• Arguments, particularly of multiple types

• Multiple return values from modules



Endless Recursion

• Here we enforce an execution step limit and 
(generally) penalize programs that exceed it

• In Push results may be available even when 
execution is terminated for hitting the limit



Return Values
• Of tagging: we consider:

•  “silent”: return default constant value without 
executing tagged code

• “non-silent”: evaluate the tagged code and 
return its value

• Of tag references prior to tagging: here we 
return a default constant value

• In Push it is trivial to provide no return value in 
all of these cases



Arguments

• Here we allow only 0-argument modules

• There’s a tricky way in which the tag space 
itself can conceivably be used to pass 
arguments anyway (see paper)

• In Push any number of arguments may be 
provided without doing anything special



Multiple Return Values

• Basically we ignore this here, although again 
the tag space could conceivably be used to do 
something similar

• In Push it is trivial to return any number of 
values



Lawnmower Problem

• Used by Koza to demonstrate utility of ADFs 
for scaling GP up to larger problems

>



Lawnmower Results



Even 4-Parity Results



First Conclusion

• The very simple form of “tags in trees” 
considered here is not always good!

• The remainder of our paper considers less 
simple approaches that may be better



Unbounded Recursion

• Penalties for hitting the execution limit may 
make tags too “dangerous” 

• Note: we did not use penalties for the 
Lawnmower problem, since it works by side 
effects on the lawn state

• Various approaches are possible for eliminating 
rather than penalizing unbounded recursion



Arguments

• Pseudo-argument symbols like arg0, arg1, 
etc., which get replaced by values passed in 
as arguments to argument-taking tag-
reference functions like tagged-1-arg, 
tagged-2-arg, etc.

• Defaults for args in wrong contexts

• Pre-specify maximum number of args

• Tag references with embedded argument 
reference tags



Program Size and Depth

• In the simple scheme presented here, tagging 
and tag references increase tree size and depth

• Depth and size limits therefore punish tag usage

• Tagging and tag-reference calls can be omitted 
from counts/limits in various ways

• Alternative syntax may involve less impact on 
size and depth  



More Conclusions

• Trees are constraining!

• Tags may nonetheless be useful in tree-based GP

• Everyone should use Push ;-)

• Tag-based modules may also be a good fit to 
other forms of GP, e.g. Cartesian GP and 
Grammatical Evolution
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